Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 30(Pt 4): 671-685, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37318367

RESUMO

An experimental platform for dynamic diamond anvil cell (dDAC) research has been developed at the High Energy Density (HED) Instrument at the European X-ray Free Electron Laser (European XFEL). Advantage was taken of the high repetition rate of the European XFEL (up to 4.5 MHz) to collect pulse-resolved MHz X-ray diffraction data from samples as they are dynamically compressed at intermediate strain rates (≤103 s-1), where up to 352 diffraction images can be collected from a single pulse train. The set-up employs piezo-driven dDACs capable of compressing samples in ≥340 µs, compatible with the maximum length of the pulse train (550 µs). Results from rapid compression experiments on a wide range of sample systems with different X-ray scattering powers are presented. A maximum compression rate of 87 TPa s-1 was observed during the fast compression of Au, while a strain rate of ∼1100 s-1 was achieved during the rapid compression of N2 at 23 TPa s-1.


Assuntos
Diamante , Lasers , Difração de Raios X , Pressão , Raios X
2.
Angew Chem Int Ed Engl ; 58(27): 9060-9063, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31020764

RESUMO

The high-pressure behavior of non-metal nitrides is of special interest for inorganic and theoretical chemistry as well as materials science, as these compounds feature intriguing elastic properties. The double nitride α-BP3 N6 was investigated by in situ single-crystal X-ray diffraction (XRD) upon cold compression to a maximum pressure of about 42 GPa, and its isothermal bulk modulus at ambient conditions was determined to be 146(6) GPa. At maximum pressure the sample was laser-heated, which resulted in the formation of an unprecedented high-pressure polymorph, ß-BP3 N6 . Its structure was elucidated by single-crystal XRD, and can be described as a decoration of a distorted hexagonal close packing of N with B in tetrahedral and P in octahedral voids. Hence, ß-BP3 N6 is the first nitride to contain PN6 octahedra, representing the much sought-after proof of principle for sixfold N-coordinated P that has been predicted for numerous high-pressure phases of nitrides.

3.
Angew Chem Int Ed Engl ; 57(29): 9048-9053, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29774981

RESUMO

A nitrogen-rich compound, ReN8 ⋅x N2 , was synthesized by a direct reaction between rhenium and nitrogen at high pressure and high temperature in a laser-heated diamond anvil cell. Single-crystal X-ray diffraction revealed that the crystal structure, which is based on the ReN8 framework, has rectangular-shaped channels that accommodate nitrogen molecules. Thus, despite a very high synthesis pressure, exceeding 100 GPa, ReN8 ⋅x N2 is an inclusion compound. The amount of trapped nitrogen (x) depends on the synthesis conditions. The polydiazenediyl chains [-N=N-]∞ that constitute the framework have not been previously observed in any compound. Ab initio calculations on ReN8 ⋅x N2 provide strong support for the experimental results and conclusions.

4.
Materials (Basel) ; 16(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37763493

RESUMO

The reduction of Co-based oxides doped with Al3+ ions has been studied using in situ XRD and TPR techniques. Al3+-modified Co3O4 oxides with the Al mole fraction Al/(Co + Al) = 1/6; 1/7.5 were prepared via coprecipitation, with further calcination at 500 and 850 °C. Using XRD and HAADF-STEM combined with EDS element mapping, the Al3+ cations were dissolved in the Co3O4 lattice; however, the cation distribution differed and depended on the calcination temperature. Heating at 500 °C led to the formation of an inhomogeneous (Co,Al)3O4 solid solution; further treatment at 850 °C provoked the partial decomposition of mixed Co-Al oxides and the formation of particles with an Al-depleted interior and Al-enriched surface. It has been shown that the reduction of cobalt oxide by hydrogen occurs via the following transformations: (Co,Al)3O4 → (Co,Al)O → Co. Depending on the Al distribution, the course of reduction changes. In the case of the inhomogeneous (Co,Al)3O4 solid solution, Al stabilizes intermediate Co(II)-Al(III) oxides during reduction. When Al3+ ions are predominantly on the surface of the Co3O4 particles, the intermediate compound consists of Al-depleted and Al-enriched Co(II)-Al(III) oxides, which are reduced independently. Different distributions of elemental Co and Al in mixed oxides simulate different types of the interaction phase in Co3O4/γ-Al2O3-supported catalysts. These changes in the reduction properties can significantly affect the state of an active component of the Co-based catalysts.

5.
Front Chem ; 11: 1258389, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37867996

RESUMO

Silicate perovskite, with the mineral name bridgmanite, is the most abundant mineral in the Earth's lower mantle. We investigated crystal structures and equations of state of two perovskite-type Fe3+-rich phases, FeMg0.5Si0.5O3 and Fe0.5Mg0.5Al0.5Si0.5O3, at high pressures, employing single-crystal X-ray diffraction and synchrotron Mössbauer spectroscopy. We solved their crystal structures at high pressures and found that the FeMg0.5Si0.5O3 phase adopts a novel monoclinic double-perovskite structure with the space group of P21/n at pressures above 12 GPa, whereas the Fe0.5Mg0.5Al0.5Si0.5O3 phase adopts an orthorhombic perovskite structure with the space group of Pnma at pressures above 8 GPa. The pressure induces an iron spin transition for Fe3+ in a (Fe0.7,Mg0.3)O6 octahedral site of the FeMg0.5Si0.5O3 phase at pressures higher than 40 GPa. No iron spin transition was observed for the Fe0.5Mg0.5Al0.5Si0.5O3 phase as all Fe3+ ions are located in bicapped prism sites, which have larger volumes than an octahedral site of (Al0.5,Si0.5)O6.

6.
IUCrJ ; 8(Pt 2): 208-214, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33708398

RESUMO

At high pressures, autoionization - along with polymerization and metallization - is one of the responses of simple molecular systems to a rise in electron density. Nitro-sonium nitrate (NO+NO3 -), known for this property, has attracted a large interest in recent decades and was reported to be synthesized at high pressure and high temperature from a variety of nitro-gen-oxygen precursors, such as N2O4, N2O and N2-O2 mixtures. However, its structure has not been determined unambiguously. Here, we present the first structure solution and refinement for nitro-sonium nitrate on the basis of single-crystal X-ray diffraction at 7.0 and 37.0 GPa. The structure model (P21/m space group) contains the triple-bonded NO+ cation and the NO3 - sp 2-trigonal planar anion. Remarkably, crystal-chemical considerations and accompanying density-functional-theory calculations show that the oxygen atom of the NO+ unit is positively charged - a rare occurrence when in the presence of a less-electronegative element.

7.
Sci Rep ; 10(1): 1483, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001799

RESUMO

This study is devoted to the detailed in situ Raman spectroscopy investigation of propane C3H8 in laser-heated diamond anvil cells in the range of pressures from 3 to 22 GPa and temperatures from 900 to 3000 K. We show that propane, while being exposed to particular thermobaric conditions, could react, leading to the formation of hydrocarbons, both saturated and unsaturated as well as soot. Our results suggest that propane could be a precursor of heavy hydrocarbons and will produce more than just sooty material when subjected to extreme conditions. These results could clarify the issue of the presence of heavy hydrocarbons in the Earth's upper mantle.

8.
Nat Commun ; 11(1): 2721, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483171

RESUMO

Feldspars are rock-forming minerals that make up most of the Earth's crust. Along the mantle geotherm, feldspars are stable at pressures up to 3 GPa and may persist metastably at higher pressures under cold conditions. Previous structural studies of feldspars are limited to ~10 GPa, and have shown that the dominant mechanism of pressure-induced deformation is the tilting of AlO4 and SiO4 tetrahedra in a tetrahedral framework. Herein, based on results of in situ single-crystal X-ray diffraction studies up to 27 GPa, we report the discovery of new high-pressure polymorphs of the feldspars anorthite (CaSi2Al2O8), albite (NaAlSi3O8), and microcline (KAlSi3O8). The phase transitions are induced by severe tetrahedral distortions, resulting in an increase in the Al and/or Si coordination number. High-pressure phases derived from feldspars could persist at depths corresponding to the Earth upper mantle and could possibly influence the dynamics and fate of cold subducting slabs.

9.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 5): 715-719, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32431938

RESUMO

The crystal structure of MgCO3-II has long been discussed in the literature where DFT-based model calculations predict a pressure-induced transition of the carbon atom from the sp 2 to the sp 3 type of bonding. We have now determined the crystal structure of iron-bearing MgCO3-II based on single-crystal X-ray diffraction measurements using synchrotron radiation. We laser-heated a synthetic (Mg0.85Fe0.15)CO3 single crystal at 2500 K and 98 GPa and observed the formation of a monoclinic phase with composition (Mg2.53Fe0.47)C3O9 in the space group C2/m that contains tetra-hedrally coordinated carbon, where CO4 4- tetra-hedra are linked by corner-sharing oxygen atoms to form three-membered C3O9 6- ring anions. The crystal structure of (Mg0.85Fe0.15)CO3 (magnesium iron carbonate) at 98 GPa and 300 K is reported here as well. In comparison with previous structure-prediction calculations and powder X-ray diffraction data, our structural data provide reliable information from experiments regarding atomic positions, bond lengths, and bond angles.

10.
Nat Commun ; 10(1): 4515, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586062

RESUMO

The synthesis of polynitrogen compounds is of fundamental importance due to their potential as environmentally-friendly high energy density materials. Attesting to the intrinsic difficulties related to their formation, only three polynitrogen ions, bulk stabilized as salts, are known. Here, magnesium and molecular nitrogen are compressed to about 50 GPa and laser-heated, producing two chemically simple salts of polynitrogen anions, MgN4 and Mg2N4. Single-crystal X-ray diffraction reveals infinite anionic polythiazyl-like 1D N-N chains in the crystal structure of MgN4 and cis-tetranitrogen N44- units in the two isosymmetric polymorphs of Mg2N4. The cis-tetranitrogen units are found to be recoverable at atmospheric pressure. Our results respond to the quest for polynitrogen entities stable at ambient conditions, reveal the potential of employing high pressures in their synthesis and enrich the nitrogen chemistry through the discovery of other nitrogen species, which provides further possibilities to design improved polynitrogen arrangements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA