Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Vet Pharmacol Ther ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847265

RESUMO

Orthologs of breast cancer resistance protein (BCRP/ABCG2), an ATP-binding cassette (ABC) efflux transmembrane transporter, are present in several species. The list of compounds known to interact with BCRP is growing, and many questions remain concerning species-specific variations in substrate specificity and affinity and the potency of inhibitors. As the most abundant efflux transporter known to be present in the blood-milk barrier, BCRP can increase the elimination of certain xenobiotics to milk, posing a risk for suckling offspring and dairy product consumers. Here we developed a model that can be employed to investigate species-specific differences between BCRP substrates and inhibitors. Membrane vesicles were isolated from transiently transduced human embryonic kidney (HEK) 293 cells, overexpressing BCRP, with human, bovine, caprine, and ovine cDNA sequences. To confirm BCRP transport activity in the transduced cells, D-luciferin efflux was measured and to confirm transport activity in the membrane vesicles, [3H] estrone-3-sulfate ([3H]E1S) influx was measured. We also determined the Michaelis-Menten constant (Km) and Vmax of [3H]E1S for each species. We have developed an in vitro transport model to study differences in compound interactions with BCRP orthologs from milk-producing animal species and humans. BCRP transport activity was demonstrated in the species-specific transduced cells by a reduced accumulation of D-luciferin compared with the control cells, indicating BCRP-mediated efflux of D-luciferin. Functionality of the membrane vesicle model was demonstrated by confirming ATP-dependent transport and by quantifying the kinetic parameters, Km and Vmax for the model substrate [3H]E1S. The values were not significantly different between species for the model substrates tested. This model can be insightful for appropriate inter-species extrapolations and risk assessments of xenobiotics in lactating woman and dairy animals.

2.
Arch Toxicol ; 97(3): 685-696, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36436016

RESUMO

Poly- and perfluoroalkyl substances (PFASs) are omnipresent in the environment and have been shown to accumulate in humans. Most PFASs are not biotransformed in animals and humans, so that elimination is largely dependent on non-metabolic clearance via bile and urine. Accumulation of certain PFASs in humans may relate to their reabsorption from the pre-urine by transporter proteins in the proximal tubules of the kidney, such as URAT1 and OAT4. The present study assessed the in vitro transport of 7 PFASs (PFHpA, PFOA, PFNA, PFDA, PFBS, PFHxS and PFOS) applying URAT1- or OAT4-transfected human embryonic kidney (HEK) cells. Virtually no transport of PFASs could be measured in URAT1-transfected HEK cells. All PFASs, except PFBS, showed clear uptake in OAT4-transfected HEK cells. In addition, these in vitro results were further supported by in silico docking and molecular dynamic simulation studies assessing transporter-ligand interactions. Information on OAT4-mediated transport may provide insight into the accumulation potential of PFASs in humans, but other kinetic aspects may play a role and should also be taken into account. Quantitative information on all relevant kinetic processes should be integrated in physiologically based kinetic (PBK) models, to predict congener-specific accumulation of PFASs in humans in a more accurate manner.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Transportadores de Ânions Orgânicos , Animais , Humanos , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Proteínas de Transporte/metabolismo , Fluorocarbonos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Ácidos Alcanossulfônicos/metabolismo
3.
PLoS Comput Biol ; 17(3): e1008786, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33661919

RESUMO

Morphine is a widely used opioid analgesic, which shows large differences in clinical response in children, even when aiming for equivalent plasma drug concentrations. Age-dependent brain disposition of morphine could contribute to this variability, as developmental increase in blood-brain barrier (BBB) P-glycoprotein (Pgp) expression has been reported. In addition, age-related pharmacodynamics might also explain the variability in effect. To assess the influence of these processes on morphine effectiveness, a multi-compartment brain physiologically based pharmacokinetic/pharmacodynamic (PB-PK/PD) model was developed in R (Version 3.6.2). Active Pgp-mediated morphine transport was measured in MDCKII-Pgp cells grown on transwell filters and translated by an in vitro-in vivo extrapolation approach, which included developmental Pgp expression. Passive BBB permeability of morphine and its active metabolite morphine-6-glucuronide (M6G) and their pharmacodynamic parameters were derived from experiments reported in literature. Model simulations after single dose morphine were compared with measured and published concentrations of morphine and M6G in plasma, brain extracellular fluid (ECF) and cerebrospinal fluid (CSF), as well as published drug responses in children (1 day- 16 years) and adults. Visual predictive checks indicated acceptable overlays between simulated and measured morphine and M6G concentration-time profiles and prediction errors were between 1 and -1. Incorporation of active Pgp-mediated BBB transport into the PB-PK/PD model resulted in a 1.3-fold reduced brain exposure in adults, indicating only a modest contribution on brain disposition. Analgesic effect-time profiles could be described reasonably well for older children and adults, but were largely underpredicted for neonates. In summary, an age-appropriate morphine PB-PK/PD model was developed for the prediction of brain pharmacokinetics and analgesic effects. In the neonatal population, pharmacodynamic characteristics, but not brain drug disposition, appear to be altered compared to adults and older children, which may explain the reported differences in analgesic effect.


Assuntos
Analgésicos Opioides , Encéfalo/metabolismo , Modelos Biológicos , Derivados da Morfina , Morfina , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Adulto , Fatores Etários , Analgesia , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/sangue , Analgésicos Opioides/farmacocinética , Barreira Hematoencefálica/metabolismo , Criança , Pré-Escolar , Biologia Computacional , Feminino , Humanos , Recém-Nascido , Masculino , Morfina/administração & dosagem , Morfina/sangue , Morfina/farmacocinética , Derivados da Morfina/administração & dosagem , Derivados da Morfina/sangue , Derivados da Morfina/farmacocinética
4.
Annu Rev Pharmacol Toxicol ; 58: 271-291, 2018 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28715978

RESUMO

Insight into drug transport mechanisms is highly relevant to the efficacious treatment of tuberculosis (TB). Major problems in TB treatment are related to the transport of antituberculosis (anti-TB) drugs across human and mycobacterial membranes, affecting the concentrations of these drugs systemically and locally. Firstly, transporters located in the intestines, liver, and kidneys all determine the pharmacokinetics and pharmacodynamics of anti-TB drugs, with a high risk of drug-drug interactions in the setting of concurrent use of antimycobacterial, antiretroviral, and antidiabetic agents. Secondly, human efflux transporters limit the penetration of anti-TB drugs into the brain and cerebrospinal fluid, which is especially important in the treatment of TB meningitis. Finally, efflux transporters located in the macrophage and Mycobacterium tuberculosis cell membranes play a pivotal role in the emergence of phenotypic tolerance and drug resistance, respectively. We review the role of efflux transporters in TB drug disposition and evaluate the promise of efflux pump inhibition from a novel holistic perspective.


Assuntos
Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Proteínas de Membrana Transportadoras/metabolismo , Tuberculose/tratamento farmacológico , Tuberculose/metabolismo , Animais , Desenvolvimento de Medicamentos/métodos , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos
5.
Pharm Res ; 38(10): 1663-1675, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34647232

RESUMO

PURPOSE: Organic Anion Transporting Polypeptide 1B1 (OATP1B1) mediates hepatic influx and clearance of many drugs, including statins. The SLCO1B1 gene is highly polymorphic and its function-impairing variants can predispose patients to adverse effects. The effects of rare genetic variants of SLCO1B1 are mainly unexplored. We examined the impact of eight naturally occurring rare variants and the well-known SLCO1B1 c.521C > T (V174A) variant on in vitro transport activity, cellular localization and abundance. METHODS: Transport of rosuvastatin and 2,7-dichlorofluorescein (DCF) in OATP1B1 expressing HEK293 cells was measured to assess changes in activity of the variants. Immunofluorescence and confocal microscopy determined the cellular localization of OATP1B1 and LC-MS/MS based quantitative targeted absolute proteomics analysis quantified the amount of OATP1B1 in crude membrane fractions. RESULTS: All studied variants, with the exception of P336R, reduced protein abundance to varying degree. V174A reduced protein abundance the most, over 90% compared to wild type. Transport function was lost in G76E, V174A, L193R and R580Q variants. R181C decreased activity significantly, while T345M and L543W retained most of wild type OATP1B1 activity. P336R showed increased activity and H575L decreased the transport of DCF significantly, but not of rosuvastatin. Decreased activity was interrelated with lower absolute protein abundance in the studied variants. CONCLUSIONS: Transmembrane helices 2, 4 and 11 appear to be crucial for proper membrane localization and function of OATP1B1. Four of the studied variants were identified as loss-of-function variants and as such could make the individual harboring these variants susceptible to altered pharmacokinetics and adverse effects of substrate drugs.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Isoquinolinas/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Nucleotídeos/metabolismo , Rosuvastatina Cálcica/metabolismo , Transporte Biológico , Interações Medicamentosas , Expressão Gênica , Células HEK293 , Humanos , Fígado , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Mutação , Polimorfismo Genético , Espectrometria de Massas em Tandem
6.
Biol Cybern ; 115(2): 117-120, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33774717

RESUMO

I present a personal account of the origin, development and future of a concept that appeared in this journal in 1984. The title was The Structure of Images. It became known as "scale space."

7.
Arch Toxicol ; 95(9): 3015-3029, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34268580

RESUMO

Variation in the efficacy and safety of central nervous system drugs between humans and rodents can be explained by physiological differences between species. An important factor could be P-glycoprotein (Pgp) activity in the blood-brain barrier (BBB), as BBB expression of this drug efflux transporter is reportedly lower in humans compared to mouse and rat and subject to an age-dependent increase. This might complicate animal to human extrapolation of brain drug disposition and toxicity, especially in children. In this study, the potential species-specific effect of BBB Pgp activity on brain drug exposure was investigated. An age-dependent brain PBPK model was used to predict cerebrospinal fluid and brain mass concentrations of Pgp substrate drugs. For digoxin, verapamil and quinidine, in vitro kinetic data on their transport by Pgp were derived from literature and used to scale to in vivo parameters. In addition, age-specific digoxin transport was simulated for children with a postnatal age between 25 and 81 days. BBB Pgp activity in the model was optimized using measured CSF data for the Pgp substrates ivermectin, indinavir, vincristine, docetaxel, paclitaxel, olanzapine and citalopram, as no useful in vitro data were available. Inclusion of Pgp activity in the model resulted in optimized predictions of their brain concentration. Total brain-to-plasma AUC values (Kp,brain) in the simulations without Pgp were divided by the Kp,brain values with Pgp. Kp ratios ranged from 1 to 45 for the substrates investigated. Comparison of human with rodent Kp,brain ratios indicated ≥ twofold lower values in human for digoxin, verapamil, indinavir, paclitaxel and citalopram and ≥ twofold higher values for vincristine. In conclusion, BBB Pgp activity appears species-specific. An age-dependent PBPK model-based approach could be useful to extrapolate animal data to human adult and paediatric predictions by taking into account species-specific and developmental BBB Pgp expression.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Modelos Biológicos , Adulto , Fatores Etários , Animais , Criança , Simulação por Computador , Feminino , Humanos , Masculino , Camundongos , Ratos , Especificidade da Espécie , Distribuição Tecidual
8.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32690641

RESUMO

Single nucleotide polymorphisms in the OATP1B1 transporter have been suggested to partially explain the large interindividual variation in rifampicin exposure. HEK293 cells overexpressing wild-type (WT) or OATP1B1 variants *1b, *4, *5, and *15 were used to determine the in vitro rifampicin intrinsic clearance. For OATP1B1*5 and *15, a 36% and 42% reduction in intrinsic clearance, respectively, compared to WT was found. We consider that these differences in intrinsic clearance most likely have minor clinical implications.


Assuntos
Transportadores de Ânions Orgânicos , Rifampina , Transporte Biológico , Células HEK293 , Humanos , Fígado/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Polimorfismo de Nucleotídeo Único , Rifampina/metabolismo , Rifampina/farmacologia
9.
Mol Pharm ; 17(10): 3748-3758, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32845645

RESUMO

Food additives are compounds that are added to food and beverage to improve the taste, color, preservation, or composition. Generally, food additives are considered safe for human use due to safety evaluations conducted by food safety authorities and high safety margins applied to permitted usage levels. However, the interaction potential of food additives with simultaneously administered medication has not received much attention. Even though many food additives are poorly absorbed into systemic circulation, high concentrations could exist in the intestinal lumen, making intestinal drug transporters, such as the uptake transporter organic anion transporting polypeptide 2B1 (OATP2B1), a possible site of food additive-drug interactions. In the present work, we aimed to characterize the interaction of a selection of 25 food additives including colorants, preservatives, and sweeteners with OATP2B1 in vitro. In human embryonic kidney 293 (HEK293) cells transiently overexpressing OATP2B1 or control, uptake of dibromofluorescein was studied with and without 50 µM food additive at pH 7.4. As OATP2B1 displays substrate- and pH-dependent transport functions and the intraluminal pH varies along the gastrointestinal tract, we performed the studies also at pH 5.5 using estrone sulfate as an OATP2B1 substrate. Food additives that inhibited OATP2B1-mediated substrate transport by ≥50% were subjected to dose-response studies. Six colorants were identified and validated as OATP2B1 inhibitors at pH 5.5, but only three of these were categorized as inhibitors at pH 7.4. One sweetener was validated as an inhibitor under both assay conditions, whereas none of the preservatives exhibited ≥50% inhibition of OATP2B1-mediated transport. Extrapolation of computed inhibitory constants (Ki values) to estimations of intestinal food additive concentrations implies that selected colorants could inhibit intestinal OATP2B1 also in vivo. These results suggest that food additives, especially colorants, could alter the pharmacokinetics of orally administered OATP2B1 substrate drugs, although further in vivo studies are warranted to understand the overall clinical consequences of the findings.


Assuntos
Aditivos Alimentares/farmacologia , Interações Alimento-Droga , Mucosa Intestinal/metabolismo , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Administração Oral , Estrona/administração & dosagem , Estrona/análogos & derivados , Estrona/farmacocinética , Fluoresceínas/farmacocinética , Células HEK293 , Humanos , Transportadores de Ânions Orgânicos/metabolismo , Proteínas Recombinantes/metabolismo
10.
PLoS Comput Biol ; 15(6): e1007117, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31194730

RESUMO

Different pediatric physiologically-based pharmacokinetic (PBPK) models have been described incorporating developmental changes that influence plasma drug concentrations. Drug disposition into cerebrospinal fluid (CSF) is also subject to age-related variation and can be further influenced by brain diseases affecting blood-brain barrier integrity, like meningitis. Here, we developed a generic pediatric brain PBPK model to predict CSF concentrations of drugs that undergo passive transfer, including age-appropriate parameters. The model was validated for the analgesics paracetamol, ibuprofen, flurbiprofen and naproxen, and for a pediatric meningitis population by empirical optimization of the blood-brain barrier penetration of the antibiotic meropenem. Plasma and CSF drug concentrations derived from the literature were used to perform visual predictive checks and to calculate ratios between simulated and observed area under the concentration curves (AUCs) in order to evaluate model performance. Model-simulated concentrations were comparable to observed data over a broad age range (3 months-15 years postnatal age) for all drugs investigated. The ratios between observed and simulated AUCs (AUCo/AUCp) were within 2-fold difference both in plasma (range 0.92-1.09) and in CSF (range 0.64-1.23) indicating acceptable model performance. The model was also able to describe disease-mediated changes in neonates and young children (<3m postnatal age) related to meningitis and sepsis (range AUCo/AUCp plasma: 1.64-1.66, range AUCo/AUCp CSF: 1.43-1.73). Our model provides a new computational tool to predict CSF drug concentrations in children with and without meningitis and can be used as a template model for other compounds that passively enter the CNS.


Assuntos
Analgésicos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Meningite/metabolismo , Modelos Biológicos , Acetaminofen/líquido cefalorraquidiano , Acetaminofen/metabolismo , Acetaminofen/farmacocinética , Adolescente , Adulto , Analgésicos/líquido cefalorraquidiano , Analgésicos/metabolismo , Analgésicos/farmacocinética , Química Encefálica/fisiologia , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido
11.
Arch Toxicol ; 94(9): 3027-3032, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32472168

RESUMO

Paracetamol (acetaminophen, APAP) overdose is a leading cause of acute drug-induced liver failure. APAP hepatotoxicity is mediated by the reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI). NAPQI is inactivated by conjugation with glutathione (GSH) to APAP-GSH, which is further converted into its cysteine derivative APAP-CYS. Before necrosis of hepatocytes occurs, APAP-CYS is measurable in plasma of the affected patient and it has been proposed as an early biomarker of acetaminophen toxicity. APAP-GSH and APAP-CYS can be extruded by hepatocytes, but the transporters involved are unknown. In this study we examined whether ATP-binding cassette (ABC) transporters play a role in the cellular efflux of APAP, APAP-GSH, and APAP-CYS. The ABC transport proteins P-gp/ABCB1, BSEP/ABCB11, BCRP/ABCG2, and MRP/ABCC1-5 were overexpressed in HEK293 cells and membrane vesicles were produced. Whereas P-gp, BSEP, MRP3, MRP5, and BCRP did not transport any of the compounds, uptake of APAP-GSH was found for MRP1, MRP2 and MRP4. APAP-CYS appeared to be a substrate of MRP4 and none of the ABC proteins transported APAP. The results suggest that the NAPQI metabolite APAP-CYS can be excreted into plasma by MRP4, where it could be a useful biomarker for APAP exposure and toxicity. Characterization of the cellular efflux of APAP-CYS is important for its development as a biomarker, because plasma concentrations might be influenced by drug-transporter interactions and upregulation of MRP4.


Assuntos
Acetaminofen/toxicidade , Cisteína/metabolismo , Glutationa/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Acetaminofen/metabolismo , Células HEK293 , Humanos , Proteínas de Neoplasias/metabolismo
12.
J Vis ; 20(10): 5, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007079

RESUMO

As humans move through parts of their environment, they meet others that may or may not try to interact with them. Where do people look when they meet others? We had participants wearing an eye tracker walk through a university building. On the way, they encountered nine "walkers." Walkers were instructed to e.g. ignore the participant, greet him or her, or attempt to hand out a flyer. The participant's gaze was mostly directed to the currently relevant body parts of the walker. Thus, the participants gaze depended on the walker's action. Individual differences in participant's looking behavior were consistent across walkers. Participants who did not respond to the walker seemed to look less at that walker, although this difference was not statistically significant. We suggest that models of gaze allocation should take social motivation into account.


Assuntos
Fixação Ocular/fisiologia , Caminhada , Adulto , Movimentos Oculares/fisiologia , Feminino , Humanos , Masculino
13.
Perception ; 52(6): 367-370, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37186796

Assuntos
Percepção , Humanos
14.
J Vis ; 18(9): 25, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30267077

RESUMO

The human visual system is remarkably good at decomposing local and global deformations in the flow of visual information into different perceptual layers, a critical ability for daily tasks such as driving through rain or fog or catching that evasive trout. In these scenarios, changes in the visual information might be due to a deforming object or deformations due to a transparent medium, such as structured glass or water, or a combination of these. How does the visual system use image deformations to make sense of layering due to transparent materials? We used eidolons to investigate equivalence classes for perceptually similar transparent layers. We created a stimulus space for perceptual equivalents of a fiducial scene by systematically varying the local disarray parameters reach and grain. This disarray in eidolon space leads to distinct impressions of transparency, specifically, high reach and grain values vividly resemble water whereas smaller grain values appear diffuse like structured glass. We asked observers to adjust image deformations so that the objects in the scene looked like they were seen (a) under water, (b) behind haze, or (c) behind structured glass. Observers adjusted image deformation parameters by moving the mouse horizontally (grain) and vertically (reach). For two conditions, water and glass, we observed high intraobserver consistency: responses were not random. Responses yielded a concentrated equivalence class for water and structured glass.


Assuntos
Retina/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Visão Ocular , Adulto Jovem
15.
J Vis ; 18(13): 21, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30593064

RESUMO

Peripheral perception is limited in terms of visual acuity, contrast sensitivity, and positional uncertainty. In the present study we used an image-manipulation algorithm (the Eidolon Factory) based on a formal description of the visual field as a tool to investigate how peripheral stimuli appear in the presence of such limitations. Observers were asked to match central and peripheral stimuli, both configurations of superimposed geometric shapes and patches of natural images, in terms of the parameters controlling the amplitude of the perturbation (reach) and the cross-scale similarity of the perturbation (coherence). We found that observers systematically tended to report the peripheral stimuli as having shorter reach and higher coherence. This means that their matches both were less distorted and had sharper edges relative to the actual stimulus. Overall, the results indicate that the way we see objects in our peripheral visual field is complemented by our assumptions about the way the same objects would appear if they were viewed foveally.


Assuntos
Sensibilidades de Contraste/fisiologia , Percepção de Forma/fisiologia , Adulto , Algoritmos , Feminino , Fóvea Central , Humanos , Masculino , Acuidade Visual/fisiologia , Campos Visuais/fisiologia , Adulto Jovem
16.
Mol Microbiol ; 101(1): 78-91, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26991313

RESUMO

Multidrug resistance (MDR) proteins belong to the B subfamily of the ATP Binding Cassette (ABC) transporters, which export a wide range of compounds including pharmaceuticals. In this study, we used reverse genetics to study the role of all seven Plasmodium MDR proteins during the life cycle of malaria parasites. Four P. berghei genes (encoding MDR1, 4, 6 and 7) were refractory to deletion, indicating a vital role during blood stage multiplication and validating them as potential targets for antimalarial drugs. Mutants lacking expression of MDR2, MDR3 and MDR5 were generated in both P. berghei and P. falciparum, indicating a dispensable role for blood stage development. Whereas P. berghei mutants lacking MDR3 and MDR5 had a reduced blood stage multiplication in vivo, blood stage growth of P. falciparum mutants in vitro was not significantly different. Oocyst maturation and sporozoite formation in Plasmodium mutants lacking MDR2 or MDR5 was reduced. Sporozoites of these P. berghei mutants were capable of infecting mice and life cycle completion, indicating the absence of vital roles during liver stage development. Our results demonstrate vital and dispensable roles of MDR proteins during blood stages and an important function in sporogony for MDR2 and MDR5 in both Plasmodium species.


Assuntos
Culicidae/parasitologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Animais , Antimaláricos/farmacologia , Resistência a Múltiplos Medicamentos , Feminino , Estágios do Ciclo de Vida , Malária/parasitologia , Malária Falciparum/parasitologia , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Oócitos/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Esporozoítos/metabolismo
17.
Cell Microbiol ; 18(3): 369-83, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26332724

RESUMO

Multidrug resistance-associated proteins (MRPs) belong to the C-family of ATP-binding cassette (ABC) transport proteins and are known to transport a variety of physiologically important compounds and to be involved in the extrusion of pharmaceuticals. Rodent malaria parasites encode a single ABC transporter subfamily C protein, whereas human parasites encode two: MRP1 and MRP2. Although associated with drug resistance, their biological function and substrates remain unknown. To elucidate the role of MRP throughout the parasite life cycle, Plasmodium berghei and Plasmodium falciparum mutants lacking MRP expression were generated. P. berghei mutants lacking expression of the single MRP as well as P. falciparum mutants lacking MRP1, MRP2 or both proteins have similar blood stage growth kinetics and drug-sensitivity profiles as wild type parasites. We show that MRP1-deficient parasites readily invade primary human hepatocytes and develop into mature liver stages. In contrast, both P. falciparum MRP2-deficient parasites and P. berghei mutants lacking MRP protein expression abort in mid to late liver stage development, failing to produce mature liver stages. The combined P. berghei and P. falciparum data are the first demonstration of a critical role of an ABC transporter during Plasmodium liver stage development.


Assuntos
Fígado/parasitologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Plasmodium berghei/patogenicidade , Plasmodium falciparum/patogenicidade , Esporozoítos/fisiologia , Animais , Animais Geneticamente Modificados , Antimaláricos/farmacologia , Sangue/parasitologia , Feminino , Hepatócitos/parasitologia , Interações Hospedeiro-Parasita , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo
18.
Malar J ; 16(1): 422, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29061131

RESUMO

BACKGROUND: Malaria, HIV/AIDS, and tuberculosis endemic areas show considerable geographical overlap, leading to incidence of co-infections. This requires treatment with multiple drugs, potentially causing adverse drug-drug interactions (DDIs). As anti-malarials are generally positively charged at physiological pH, they are likely to interact with human organic cation transporters 1 and 2 (OCT1 and OCT2). These transporters are involved in the uptake of drugs into hepatocytes and proximal tubule cells for subsequent metabolic conversion or elimination. This efflux of cationic drugs from hepatocytes and proximal tubule cells into bile and urine can be mediated by multidrug and toxin extrusion 1 and 2-K (MATE1 and MATE2-K) transporters, respectively. METHODS: Here, the interaction of anti-malarials with these transporters was studied in order to predict potential DDIs. Using baculovirus-transduced HEK293 cells transiently expressing human OCT1, OCT2, MATE1 and MATE2K uptake and inhibition was studied by a range of anti-malarials. RESULTS: Amodiaquine, proguanil, pyrimethamine and quinine were the most potent inhibitors of 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP) transport, a known substrate of OCT1/2, resulting in half maximal inhibitory concentrations (IC50) of 11, 13, 1.6, and 3.4 µM, respectively. Only quinine had a drug-drug index higher than the cut-off value of 0.1 for OCT2, therefore, in vivo pharmacokinetic studies focusing on DDIs involving this compound and other OCT2-interacting drugs are warranted. Furthermore, proguanil appeared to be a substrate of OCT1 and OCT2 with affinities of 8.1 and 9.0 µM, respectively. Additionally, MATE1 and MATE2-K were identified as putative transport proteins for proguanil. Finally, its metabolite cycloguanil was also identified as an OCT1, OCT2, MATE1 and MATE2-K substrate. CONCLUSION: Anti-malarials can reduce OCT1 and OCT2 transport activity in vitro. Furthermore, proguanil and cycloguanil were found to be substrates of OCT1, OCT2, MATE1 and MATE2-K, highlighting the importance of these transporters in distribution and excretion. As these compounds shares substrate overlap with metformin DDIs can be anticipated during concurrent treatment.


Assuntos
Antimaláricos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proguanil/metabolismo , Triazinas/metabolismo , Células HEK293 , Humanos , Fator 1 de Transcrição de Octâmero/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo
19.
Pharm Res ; 34(8): 1626-1636, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28281205

RESUMO

PURPOSE: To study the function and expression of nine naturally occurring single-nucleotide polymorphisms (G406R, F431L, S441N, P480L, F489L, M515R, L525R, A528T and T542A) that are predicted to reside in the transmembrane regions of the ABC transporter ABCG2. METHODS: The transport activity of the variants was tested in inside-out membrane vesicles from Sf9 insect and human derived HEK293 cells overexpressing ABCG2. Lucifer Yellow and estrone sulfate were used as probe substrates of activity. The expression levels and cellular localization of the variants was compared to the wild-type ABCG2 by western blotting and immunofluorescence microscopy. RESULTS: All studied variants of ABCG2 displayed markedly decreased transport in both Sf9-ABCG2 and HEK293-ABCG2 vesicles. Impaired transport could be explained for some variants by altered expression levels and cellular localization. Moreover, the destructive effect on transport activity of variants G406R, P480L, M515R and T542A is, to our knowledge, reported for the first time. CONCLUSIONS: These results indicate that the transmembrane region of ABCG2 is sensitive to amino acid substitution and that patients harboring these ABCG2 variant forms could suffer from unexpected pharmacokinetic events of ABCG2 substrate drugs or have an increased risk for diseases such as gout where ABCG2 is implicated.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Animais , Transporte Biológico , Variação Genética , Células HEK293 , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , Células Sf9 , Transfecção
20.
J Vis ; 17(2): 7, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28245489

RESUMO

Meanings and qualities are fundamental attributes of visual awareness. We propose "eidolons" as a tool for establishing equivalence classes of appearance along meaningful dimensions. The "eidolon factory" is an algorithm that generates stimuli in such a meaningful and transparent way. The algorithm allows us to focus on location, scale, and size of perceptually salient structures, proto-objects, and perhaps even semantics rather than global overall parameters, such as contrast and spatial frequency. The eidolon factory is based on models of the psychogenesis of visual awareness. It affects the image in terms of the disruption of image structure across space and spatial scales. This is a very general method with many potential applications. We illustrate a few instances. We present results for the example of tarachopic amblyopia, showing that scrambled vision is indeed an apt interpretation.


Assuntos
Algoritmos , Ambliopia/fisiopatologia , Percepção de Forma/fisiologia , Conscientização , Pesquisa Biomédica/métodos , Sensibilidades de Contraste/fisiologia , Humanos , Limiar Sensorial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA