Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anesth Analg ; 124(1): 104-119, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27537931

RESUMO

Because of their obvious advantages, active and passive optoelectronic sensor concepts are being investigated by biomedical research groups worldwide, particularly their camera-based variants. Such methods work noninvasively and contactless, and they provide spatially resolved parameter detection. We present 2 techniques: the active photoplethysmography imaging (PPGI) method for detecting dermal blood perfusion dynamics and the passive infrared thermography imaging (IRTI) method for detecting skin temperature distribution. PPGI is an enhancement of classical pulse oximetry. Approved algorithms from pulse oximetry for the detection of heart rate, heart rate variability, blood pressure-dependent pulse wave velocity, pulse waveform-related stress/pain indicators, respiration rate, respiratory variability, and vasomotional activity can easily be adapted to PPGI. Although the IRTI method primarily records temperature distribution of the observed object, information on respiration rate and respiratory variability can also be derived by analyzing temperature change over time, for example, in the nasal region, or through respiratory movement. Combined with current research areas and novel biomedical engineering applications (eg, telemedicine, tele-emergency, and telemedical diagnostics), PPGI and IRTI may offer new data for diagnostic purposes, including assessment of peripheral arterial and venous oxygen saturation (as well as their differences). Moreover, facial expressions and stress and/or pain-related variables can be derived, for example, during anesthesia, in the recovery room/intensive care unit and during daily activities. The main advantages of both monitoring methods are unobtrusive data acquisition and the possibility to assess vital variables for different body regions. These methods supplement each other to enable long-term monitoring of physiological effects and of effects with special local characteristics. They also offer diagnostic advantages for intensive care patients and for high-risk patients in a homecare/outdoor setting. Selected applications have been validated at our laboratory using optical PPGI and IRTI techniques in a stand-alone or hybrid configuration. Additional research and validation is required before these preliminary results can be introduced for clinical applications.


Assuntos
Expressão Facial , Hemodinâmica , Monitorização Ambulatorial/métodos , Imagem Óptica , Oximetria , Fotopletismografia , Mecânica Respiratória , Temperatura Cutânea , Pele/irrigação sanguínea , Termografia , Animais , Velocidade do Fluxo Sanguíneo , Desenho de Equipamento , Nível de Saúde , Humanos , Raios Infravermelhos , Monitorização Ambulatorial/instrumentação , Imagem Óptica/instrumentação , Oximetria/instrumentação , Fotopletismografia/instrumentação , Valor Preditivo dos Testes , Fluxo Sanguíneo Regional , Reprodutibilidade dos Testes , Termografia/instrumentação , Termômetros , Fatores de Tempo , Transdutores
2.
JMIR Hum Factors ; 6(2): e12553, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042150

RESUMO

BACKGROUND: Current anesthesia workspaces consist of several technical devices, such as patient monitors, anesthesia machines, among others. Commonly, they are produced by different manufacturers; thus, they differ in terms of their modus operandi, user interface, and representation of alarms. Merging the information from these devices using a single joint protocol and displaying it in a single graphical user interface could lead to a general improvement in perioperative management. For this purpose, the recently approved and published Institute of Electrical and Electronics Engineers 11073 service-oriented device connectivity standard was implemented. OBJECTIVE: This paper aims to develop and then evaluate an anesthesia workstation (ANWS) functional model in terms of usability, fulfillment of clinical requirements, and expected improvements in patient safety. METHODS: To compare the self-developed ANWS with the conventional system, a pilot observational study was conducted at the University Hospital Aachen, Germany. A total of 5 anesthesiologists were asked to perform different tasks using the ANWS and then the conventional setup. For evaluation purposes, response times were measured and an interaction-centered usability test with an eye-tracking system was carried out. Finally, the subjects were asked to fill in a questionnaire in order to measure user satisfaction. RESULTS: Response times were significantly higher when using the ANWS, but decreased considerably after one repetition. Furthermore, usability was rated as excellent (≥95) according to the System Usability Scale score, and the majority of clinical requirements were met. CONCLUSIONS: In general, the results were highly encouraging, considering that the ANWS was only a functional model, as well as the lack of training of the participants. However, further studies are necessary to improve the universal user interface and the interplay of the various networked devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA