Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Ecol ; 33(6): e17292, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38339833

RESUMO

Malaria cases are frequently recorded in the Ethiopian highlands even at altitudes above 2000 m. The epidemiology of malaria in the Ethiopian highlands, and, in particular, the role of importation by human migration from the highly endemic lowlands is not well understood. We sequenced 187 Plasmodium falciparum samples from two sites in the Ethiopian highlands, Gondar (n = 159) and Ziway (n = 28), using a multiplexed droplet digital PCR (ddPCR)-based amplicon sequencing method targeting 35 microhaplotypes and drug resistance loci. Here, we characterize the parasite population structure and genetic relatedness. We identify moderate parasite diversity (mean HE : 0.54) and low infection complexity (74.9% monoclonal). A significant percentage of infections share microhaplotypes, even across transmission seasons and sites, indicating persistent local transmission. We identify multiple clusters of clonal or near-clonal infections, highlighting high genetic relatedness. Only 6.3% of individuals diagnosed with P. falciparum reported recent travel. Yet, in clonal or near-clonal clusters, infections of travellers were frequently observed first in time, suggesting that parasites may have been imported and then transmitted locally. 31.1% of infections are pfhrp2-deleted and 84.4% pfhrp3-deleted, and 28.7% have pfhrp2/3 double deletions. Parasites with pfhrp2/3 deletions and wild-type parasites are genetically distinct. Mutations associated with resistance to sulphadoxine-pyrimethamine or suggested to reduce sensitivity to lumefantrine are observed at near-fixation. In conclusion, genomic data corroborate local transmission and the importance of intensified control in the Ethiopian highlands.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Humanos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Antígenos de Protozoários/genética , Etiópia/epidemiologia , Deleção de Genes , Malária Falciparum/genética , Malária/genética
2.
Malar J ; 22(1): 380, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102649

RESUMO

In many studies to evaluate the quality of malaria diagnosis, microscopy or rapid diagnostic tests (RDT) are compared to PCR. Depending on the method for sample collection and storage (whole blood or dried blood spot), volume of blood used for extraction, volume of DNA used as PCR template, and choice of PCR target (single vs. multi-copy gene), the limit of detection (LOD) of PCR might not exceed the LOD of expert microscopy or RDT. One should not assume that PCR always detects the highest number of infections.


Assuntos
Malária Falciparum , Malária , Humanos , Malária/diagnóstico , Reação em Cadeia da Polimerase/métodos , Limite de Detecção , Manejo de Espécimes , Microscopia/métodos , Testes Diagnósticos de Rotina/métodos , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Sensibilidade e Especificidade
3.
PLOS Glob Public Health ; 4(5): e0003091, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768243

RESUMO

Sensitive and accurate malaria diagnosis is required for case management to accelerate control efforts. Diagnosis is particularly challenging where multiple Plasmodium species are endemic, and where P. falciparum hrp2/3 deletions are frequent. The Noul miLab is a fully automated portable digital microscope that prepares a blood film from a droplet of blood, followed by staining and detection of parasites by an algorithm. Infected red blood cells are displayed on the screen of the instrument. Time-to-result is approximately 20 minutes, with less than two minutes hands-on time. We evaluated the miLab among 659 suspected malaria patients in Gondar, Ethiopia, where P. falciparum and P. vivax are endemic, and the frequency of hrp2/3 deletions is high, and 991 patients in Ghana, where P. falciparum transmission is intense. Across both countries combined, the sensitivity of the miLab for P. falciparum was 94.3% at densities >200 parasites/µL by qPCR, and 83% at densities >20 parasites/µL. The miLab was more sensitive than local microscopy, and comparable to RDT. In Ethiopia, the miLab diagnosed 51/52 (98.1%) of P. falciparum infections with hrp2 deletion at densities >20 parasites/µL. Specificity of the miLab was 94.0%. For P. vivax diagnosis in Ethiopia, the sensitivity of the miLab was 97.0% at densities >200 parasites/µL (RDT: 76.8%, microscopy: 67.0%), 93.9% at densities >20 parasites/µL, and specificity was 97.6%. In Ethiopia, where P. falciparum and P. vivax were frequent, the miLab assigned the wrong species to 15/195 mono-infections at densities >20 parasites/µL by qPCR, and identified only 5/18 mixed-species infections correctly. In conclusion, the miLab was more sensitive than microscopy and thus is a valuable addition to the toolkit for malaria diagnosis, particularly for areas with high frequencies of hrp2/3 deletions.

4.
Sci Rep ; 14(1): 19060, 2024 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154104

RESUMO

This study aimed to estimate the prevalence of asymptomatic and subpatent P. falciparum infections in the city of Bouaké, Central Côte d'Ivoire, to compare the performance of three tests, and to investigate potential P. falciparum histidine-rich protein 2 (pfhrp2) gene deletions. A cross-sectional survey was conducted in nine neighborhoods in Bouaké in 2016. Matched light microscopy (LM), rapid diagnostic test (RDT), and quantitative PCR (qPCR) data were used to determine the prevalence of P. falciparum infection and compare the performance of the three diagnostic tests. Pfhrp2/3 deletions were genotyped by digital PCR. Among 2313 individuals, 97.2% were asymptomatic and 2.8% were symptomatic. P. falciparum prevalence among symptomatic individuals was 25.8%, 30.3%, and 40.9% by LM, RDT, and varATS qPCR, respectively, and among asymptomatic individuals, it was 10.3%, 12.5%, and 34.9%. Asymptomatic infections comprised 96.4% of all malaria infections, with 58.2% detectable only by varATS qPCR. Although the prevalence of asymptomatic P. falciparum infections was higher in school-age children (5-14 years: 42.0%) compared to < 5 years (17.3%) and ≥ 15 years (35.9%), subpatent infections were more likely in ≥ 15 years (70.4%) than in < 5 years (39.7%) and school-age children (41.2%). LM and RDTs were reliable only at parasite densities > 10,000 parasites/µL. Individuals who were positive according to all three tests had significantly greater parasite density (856.8 parasites/µL; 95% CI 707.3-1,038) than did those who were positive by varATS qPCR only (13.7 parasites/µL; 95% CI 11.4-16.3) (p < 0.0001). No pfhrp2 deletions were observed. The high prevalence of asymptomatic and subpatent infections highlights the need for targeted strategies to reduce malaria in urban Côte d'Ivoire.


Assuntos
Antígenos de Protozoários , Infecções Assintomáticas , Deleção de Genes , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Humanos , Côte d'Ivoire/epidemiologia , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Falciparum/diagnóstico , Proteínas de Protozoários/genética , Plasmodium falciparum/genética , Prevalência , Criança , Masculino , Feminino , Adolescente , Pré-Escolar , Adulto , Estudos Transversais , Antígenos de Protozoários/genética , Pessoa de Meia-Idade , Adulto Jovem , Infecções Assintomáticas/epidemiologia , Lactente , Idoso
5.
PLOS Glob Public Health ; 4(2): e0002743, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38300956

RESUMO

Genomic epidemiology holds promise for malaria control and elimination efforts, for example by informing on Plasmodium falciparum genetic diversity and prevalence of mutations conferring anti-malarial drug resistance. Limited sequencing infrastructure in many malaria-endemic areas prevents the rapid generation of genomic data. To address these issues, we developed and validated assays for P. falciparum nanopore sequencing in endemic sites using a mobile laboratory, targeting key antimalarial drug resistance markers and microhaplotypes. Using two multiplexed PCR reactions, we amplified six highly polymorphic microhaplotypes and ten drug resistance markers. We developed a bioinformatics workflow that allows genotyping of polyclonal malaria infections, including minority clones. We validated the panels on mock dried blood spot (DBS) and rapid diagnostic test (RDT) samples and archived DBS, demonstrating even, high read coverage across amplicons (range: 580x to 3,212x median coverage), high haplotype calling accuracy, and the ability to explore within-sample diversity of polyclonal infections. We field-tested the feasibility of rapid genotyping in Zanzibar in close collaboration with the local malaria elimination program using DBS and routinely collected RDTs as sample inputs. Our assay identified haplotypes known to confer resistance to known antimalarials in the dhfr, dhps and mdr1 genes, but no evidence of artemisinin partial resistance. Most infections (60%) were polyclonal, with high microhaplotype diversity (median HE = 0.94). In conclusion, our assays generated actionable data within a few days, and we identified current challenges for implementing nanopore sequencing in endemic countries to accelerate malaria control and elimination.

6.
Am J Trop Med Hyg ; 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38150733

RESUMO

An increasing number of molecular and genomic assays are available to study malaria parasite populations. However, so far they have played a marginal role in informing policy and programmatic decision-making. Currently, molecular data are mainly used for monitoring drug efficacy against Plasmodium falciparum; assessing molecular markers of drug and insecticide resistance; and assessing P. falciparum histidine-rich protein 2 and 3 genes (Pfhrp2/3) deletion. We argue that additional use cases for molecular routine surveillance could be implemented in the near future, especially in transmission settings approaching elimination. These would include using quantitative polymerase chain reaction to monitor the prevalence of sub-patent infections in asymptomatic carriers, monitoring parasite genetic diversity as transmission intensity is changing, using genomic data to determine the origin of imported infections and characterize transmission chains in settings with very low malaria transmission, and using serology to monitor recent and past exposures in low-transmission settings. Molecular surveillance could inform control programs on adapting novel strategies, such as reactive case detection or focal mass drug administration, and help evaluate the impact of interventions currently in place. To better integrate molecular and genomic data into control program decision-making, engagement of national malaria control experts is crucial. Local laboratory capacity needs to be strengthened, shortening the time from sample collection to data availability. Here, we discuss opportunities and challenges of the use of molecular and genomic data for supporting malaria control and elimination efforts, as well as the avenues to link molecular and genomic data with gold standard epidemiological measurements through mathematical modeling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA