Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nano Lett ; 23(14): 6458-6464, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37442114

RESUMO

The conductivity and strength of carbon nanotube (CNT) wires currently rival those of existing engineering materials; fullerene-based materials have not progressed similarly, despite their exciting transport properties such as superconductivity. This communication reveals a new mechanically robust wire of mutually aligned fullerene supramolecules self-assembled between CNT bundles, where the fullerene supramolecular internal crystal structure and outer surface are aligned and dispersed with the CNT bundles. The crystallinity, crystal dimensions, and other structural features of the fullerene supramolecular network are impacted by a number of important production processes such as fullerene concentration and postprocess annealing. The crystal spacing of the CNTs and fullerenes is not altered, suggesting that they are not exerting significant internal pressure on each other. In low concentrations, the addition of networked fullerenes makes the CNT wire mechanically stronger. More importantly, novel mutually aligned and networked fullerene supramolecules are now in a bulk self-supporting architecture.

2.
Phys Chem Chem Phys ; 25(1): 131-141, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475500

RESUMO

The supramolecular assembly process is a widespread phenomenon found in both synthetically engineered and naturally occurring systems, such as colloids, liquid crystals and micelles. However, a basic understanding of the evolution of self-assembly processes over time remains elusive, primarily owing to the fast kinetics involved in these processes and the complex nature of the various non-covalent interactions operating simultaneously. With the help of a slow-evolving supramolecular gel derived from a urea-based gelator, we aim to capture the different stages of the self-assembly process commencing from nucleation. In particular, we are able to study the self-assembly in real time using time-resolved small-angle neutron scattering (SANS) at length scales ranging from approximately 30 Å to 250 Å. Systems with and without sonication are compared simultaneously, to follow the different kinetic paths involved in these two cases. Time-dependent NMR, morphological and rheological studies act complementarily to the SANS data at sub-micron and bulk length scales. A hollow columnar formation comprising of gelator monomers arranged radially along the long axis of the fiber and solvent in the core is detected at the very early stage of the self-assembly process. While sonication promotes uniform growth of fibers and fiber entanglement, the absence of such a stimulus helps extensive bundle formation at a later stage and at the microscopic domain, making the gel system mechanically robust. The results of the present work provide a thorough understanding of the self-assembly process and reveal a path for fine-tuning such growth processes for applications such as the cosmetics industry, 3D printing ink development and paint industry.

3.
Langmuir ; 35(26): 8758-8768, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31244252

RESUMO

Extrusion-based additive manufacturing methods, such as direct-write of carbon fiber-reinforced epoxy inks, have become an attractive route toward development of structural composites in recent years, because of emerging techniques such as big area additive manufacturing. The development of improved materials for these methods has been a major focus area; however, an understanding of the effects of the printing process on the structural and dynamic recovery in printed materials remains largely unexplored. The goal of this work is to capture multiscale and temporal morphology and dynamics within thermosetting composite inks to determine the parameters during the printing process that influence the recovery of the printed material. Herein, we use X-ray photon correlation spectroscopy in small-angle scattering geometry to reveal both morphology and recovery dynamics of a nanoparticle (layered-silicate Cloisite 30B) in a thermoset epoxy resin (EPON 826) during the printing process in real time. Our results show that the dynamics of the layered silicate particles during recovery are anisotropic and slow down to behavior which is characteristic of aging in colloidal clay suspensions around  tage ≈ 12 s. The dynamics and alignment of the particles during recovery were tempo-spatially mapped, and the recovery post printing was shown to be strongly influenced by the deposition onto the build plate in addition to the extrusion through the print head. Our in operando results provide insight into the parameters that must be considered when optimizing materials and methods for precisely tailored local properties during 3D printing.

5.
Nano Lett ; 17(11): 7040-7044, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28991490

RESUMO

In this work, we exploit a confinement-induced molecular synthesis and a resulting bridging mechanism to create confined polyimide thermoset nanocomposites that couple molecular confinement-enhanced toughening with an unprecedented combination of high-temperature properties at low density. We describe a synthesis strategy that involves the infiltration of individual polymer chains through a nanoscale porous network while simultaneous imidization reactions increase the molecular backbone stiffness. In the extreme limit where the confinement length scale is much smaller than the polymer's molecular size, confinement-induced molecular mechanisms give rise to exceptional mechanical properties. We find that polyimide oligomers can undergo cross-linking reactions even in such molecular-scale confinement, increasing the molecular weight of the organic phase and toughening the nanocomposite through a confinement-induced energy dissipation mechanism. This work demonstrates that the confinement-induced molecular bridging mechanism can be extended to thermoset polymers with multifunctional properties, such as excellent thermo-oxidative stability and high service temperatures (>350 °C).

6.
Biomacromolecules ; 15(2): 533-40, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24400716

RESUMO

In this study, we utilize plasma-enhanced chemical vapor deposition (PECVD) for the deposition of nanostructures composed of diphenylalanine. PECVD is a solvent-free approach and allows sublimation of the peptide to form dense, uniform arrays of peptide nanostructures on a variety of substrates. The PECVD deposited d-diphenylalanine nanostructures have a range of chemical and physical properties depending on the specific discharge parameters used during the deposition process.


Assuntos
Nanoestruturas/química , Peptídeos/química , Fenilalanina/análogos & derivados , Gases em Plasma/química , Dipeptídeos , Tamanho da Partícula , Peptídeos/síntese química , Fenilalanina/química , Propriedades de Superfície
7.
Nanoscale ; 16(17): 8369-8377, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38572999

RESUMO

As thin films of semiconducting covalent organic frameworks (COFs) are demonstrating utility for ambipolar electronics, channel materials in organic electrochemical transistors (OECTs), and broadband photodetectors, control and modulation of their thin film properties is paramount. In this work, an interfacial growth technique is utilized to synthesize imine TAPB-PDA COF films at both the liquid-liquid interface as well as at the liquid-solid interface on a Si/SiO2 substrate. The concentration of acetic acid catalyst in the aqueous phase is shown to significantly influence the thin film morphology of the liquid-solid growth, with concentrations below 1 M resulting in no film nucleation, concentrations of 1-4 M enabling smooth film formation, and concentrations greater than 4 M resulting in films with a higher density of particulates on the surface. Importantly, while the films grown at the liquid-liquid interface are mixed-orientation, those grown directly at the liquid-solid interface on the Si/SiO2 surface have highly oriented COF layers aligned parallel to the substrate surface. Moreover, this liquid-solid growth process affords TAPB-PDA COF thin films with p-type charge transport having a transconductance of 10 µS at a gate voltage of -0.9 V in an OECT device structure.

8.
Biomacromolecules ; 14(10): 3509-14, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-23987229

RESUMO

Derived from Bombyx mori cocoons, regenerated silk fibroin (RSF) exhibits excellent biocompatibility, high toughness, and tailorable biodegradability. Additionally, RSF materials are flexible, optically clear, easily patterned with nanoscale features, and may be doped with a variety bioactive species. This unique combination of properties has led to increased interest in the use of RSF in sustainable and biocompatible electronic devices. In order to explore the applicability of this biopolymer to the development of future bioelectronics, the dielectric breakdown strength (Ebd) of RSF thin films was quantified as a function of protein conformation. The application of processing conditions that increased ß-sheet content (as determined by FTIR analysis) and produced films in the silk II structure resulted in RSF materials with improved Ebd with values reaching up to 400 V/µm.


Assuntos
Fibroínas/química , Seda/química , Resistência à Tração , Animais , Bombyx , Fibroínas/metabolismo , Teste de Materiais , Tamanho da Partícula , Conformação Proteica , Seda/metabolismo , Propriedades de Superfície
9.
ACS Appl Mater Interfaces ; 15(18): 22506-22523, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37099604

RESUMO

As fused filament fabrication (FFF) continues to gain popularity, many studies are turning to nanomaterials or optimization of printing parameters to improve the materials' properties; however, many overlook how materials formulation and additive manufacturing (AM) processes cooperatively engineer the evolution of properties across length scales. Evaluating the in-process evolution of the nanocomposite using AM will provide a fundamental understanding of the material's microstructure, which can be tailored to create unique characteristics in functionality and performance. In this study, the crystallinity behavior of polyetheretherketone (PEEK) was studied in the presence of carbon nanotubes (CNTs) as a nucleation aid for improved crystallization during FFF processing. Using various characterization techniques and molecular dynamics simulations, it was discovered that the crystallization behavior of extruded filaments is very different from that of 3D printed roads. Additionally, the printed material exhibited cold crystallization, and the CNT addition increased the crystallization of printed roads, which were amorphous without CNT addition. Tensile strength and modulus were increased by as much as 42 and 51%, respectively, due to higher crystallinity during printing. Detailed knowledge on the morphology of PEEK-CNT used in FFF allows gaining a fundamental understanding of the morphological evolution occurring during the AM process that in turn enables formulating materials for the AM process to achieve tailored mechanical and functional properties, such as crystallinity or conductivity.

10.
Nanomaterials (Basel) ; 13(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36903822

RESUMO

Additively manufactured (AM) composites based on short carbon fibers possess strength and stiffness far less than their continuous fiber counterparts due to the fiber's small aspect ratio and inadequate interfaces with the epoxy matrix. This investigation presents a route for preparing hybrid reinforcements for AM that comprise short carbon fibers and nickel-based metal-organic frameworks (Ni-MOFs). The porous MOFs furnish the fibers with tremendous surface area. Additionally, the MOFs growth process is non-destructive to the fibers and easily scalable. This investigation also demonstrates the viability of using Ni-based MOFs as a catalyst for growing multi-walled carbon nanotubes (MWCNTs) on carbon fibers. The changes to the fiber were examined via electron microscopy, X-ray scattering techniques, and Fourier-transform infrared spectroscopy (FTIR). The thermal stabilities were probed by thermogravimetric analysis (TGA). Tensile and dynamic mechanical analysis (DMA) tests were utilized to explore the effect of MOFs on the mechanical properties of 3D-printed composites. Composites with MOFs exhibited improvements in stiffness and strength by 30.2% and 19.0%, respectively. The MOFs enhanced the damping parameter by 700%.

11.
ACS Appl Mater Interfaces ; 14(24): 28239-28246, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35679607

RESUMO

Polyimide hybrid nanocomposites with the polyimide confined at molecular length scales exhibit enhanced fracture resistance with excellent thermal-oxidative stability at low density. Previously, polyimide nanocomposites were fabricated by infiltration of a polyimide precursor into a nanoporous matrix followed by sequential thermally induced imidization and cross-linking of the polyimide under nanometer-scale confinement. However, byproducts formed during imidization became volatile at the cross-linking temperature, limiting the polymer fill level and degrading the nanocomposite fracture resistance. This is solved in the present work with an easier approach where the nanoporous matrix is filled with shorter preimidized polyimide chains that are cross-linked while in the pores to eliminate the need for confined imidization reactions, which produces better results compared to the previous study. In addition, we selected a preimidized polyimide that has a higher chain mobility and a stronger interaction with the matrix pore surface. Consequently, the toughness achieved with un-cross-linked preimidized polyimide chains in this work is equivalent to that achieved with the cross-linking of the previously used polyimide chains and is doubled when preimidized polyimide chains are cross-linked. The increased chain mobility enables more efficient polymer filling and higher polymer fill levels. The higher polymer-pore surface interaction increases the energy dissipation during polyimide molecular bridging, increasing the nanocomposite fracture resistance. The combination of the higher polymer fill and the stronger polymer-surface interaction is shown to provide significant improvements to the nanocomposite fracture resistance and is validated with a molecular bridging model.

12.
Nano Lett ; 10(4): 1433-9, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20349972

RESUMO

For nanoparticle-based technologies, efficient and rapid approaches that yield particles of high purity with a specific shape and size are critical to optimize the nanostructure-dependent optical, electrical, and magnetic properties, and not bias conclusions due to the existence of impurities. Notwithstanding the continual improvement of chemical methods for shaped nanoparticle synthesis, byproducts are inevitable. Separation of these impurities may be achieved, albeit inefficiently, through repeated centrifugation steps only when the sedimentation coefficient of the species shows sufficient contrast. We demonstrate a robust and efficient procedure of shape and size selection of Au nanoparticles (NPs) through the formation of reversible flocculates by surfactant micelle induced depletion interaction. Au NP flocculates form at a critical surfactant micelle molar concentration, C(m)* where the number of surfactant micelles is sufficient to induce an attractive potential energy between the Au NPs. Since the magnitude of this potential depends on the interparticle contact area of Au NPs, separation is achieved even for the NPs of the same mass with different shape by tuning the surfactant concentration and extracting flocculates from the sediment by centrifugation or gravitational sedimentation. The refined NPs are redispersed by subsequently decreasing the surfactant concentration to reduce the effective attractive potential. These concepts provide a robust method to improve the quality of large scale synthetic approaches of a diverse array of NPs, as well as fine-tune interparticle interactions for directed assembly, both crucial challenges to the continual realization of the broad technological potential of monodispersed NPs.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Micelas , Nanotecnologia/métodos , Tamanho da Partícula , Propriedades de Superfície , Tensoativos/química
14.
ACS Appl Mater Interfaces ; 9(31): 26363-26371, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28714667

RESUMO

The extremely large optical extinction coefficient of gold nanorods (Au-NRs) enables their use in a diverse array of technologies, rnging from plasmonic imaging, therapeutics and sensors, to large area coatings, filters, and optical attenuators. Development of the latter technologies has been hindered by the lack of cost-effective, large volume production. This is due in part to the low reactant concentration required for symmetry breaking in conventional seed-mediated synthesis. Direct scale up of laboratory procedures has limited viability because of excessive solvent volume, exhaustive postsynthesis purification processes, and the generation of large amounts of waste (e.g., hexadecyltrimethylammonium bromide(CTAB)). Following recent insights into the growth mechanism of Au-NRs and the role of seed development, we modify the classic seed-mediated synthesis via temporal control of seed and reactant concentration to demonstrate production of Au-NRs at more than 100-times the conventional concentration, while maintaining independent control and narrow distribution of nanoparticle dimensions, aspect ratio, and volume. Thus, gram scale synthesis of Au-NRs with prescribed aspect ratio and volume is feasible in a 100 mL reactor with 1/100th of organic waste relative to conventional approaches. Such scale-up techniques are crucial to cost-effectively meet the increased demand for large quantities of Au-NRs in emerging applications.

15.
ACS Macro Lett ; 6(11): 1290-1295, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-35650784

RESUMO

Materials capable of complex shape changes have broad reaching applications spanning biomimetic devices, componentless actuators, artificial muscles, and haptic displays. Liquid crystal elastomers (LCE) are a class of shape programmable materials which display anisotropic mechanical deformations in response external stimuli. This work details a synthetic strategy to quickly and efficiently prepare LCEs through the usage of chain transfer agents (CTA). The polyacrylate materials described herein exhibit large, reversible shape changes with strains greater 475%, rivalling properties observed in polysiloxane-based networks. The approach reported here is distinguished in that the materials chemistry is readily amenable to surface alignment techniques. The facile nature of the materials chemistry and the compatibility of these materials with directed self-assembly methods could further enable paradigm shifting end uses as designer substrates for flexible electronics or as actuating surfaces.

16.
Sci Rep ; 7(1): 12977, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021547

RESUMO

Floating catalyst chemical vapor deposition uniquely generates aligned carbon nanotube (CNT) textiles with individual CNT lengths magnitudes longer than competing processes, though hindered by impurities and intrinsic/extrinsic defects. We present a photonic-based post-process, particularly suited for these textiles, that selectively removes defective CNTs and other carbons not forming a threshold thermal pathway. In this method, a large diameter laser beam rasters across the surface of a partly aligned CNT textile in air, suspended from its ends. This results in brilliant, localized oxidation, where remaining material is an optically transparent film comprised of few-walled CNTs with profound and unique improvement in microstructure alignment and crystallinity. Raman spectroscopy shows substantial D peak suppression while preserving radial breathing modes. This increases the undoped, specific electrical conductivity at least an order of magnitude to beyond that of single-crystal graphite. Cryogenic conductivity measurements indicate intrinsic transport enhancement, opposed to simply removing nonconductive carbons/residual catalyst.

17.
J Phys Chem B ; 110(41): 20143-57, 2006 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17034189

RESUMO

The low-frequency (0.01 Hz-10 MHz) dynamic characteristics of alkyl quaternary ammonium exchanged montmorillonite (SC20A) were investigated to determine the correlation between temperature-dependent changes in the interlayer structure and collective mobility of the surfactant. From 25 to 165 degrees C, SC20A exhibits two interlayer transitions, one ascribed to the melting of the intercalated alkyl chains of the surfactant (20-40 degrees C) and another associated with an abrupt decrease in the interlayer's coefficient of thermal expansion (100 degrees C). For this temperature range, the excess surfactant and residual electrolytes present in commercially manufactured SC20A enhance the direct current conductivity and increase low-frequency space-charge polarization, which is believed to occur across percolation paths established by the surfaces of the SC20A crystallites. In contrast, a higher-frequency relaxation, which was less sensitive to process history and impurity content, is ascribed to relaxation within the interlayer at the surfactant-aluminosilicate interface electrostatic couple. The temperature dependence of these dielectric relaxations indicated a drastic increase in mobility as the interlayer organic phase transitions from static and glasslike into molten and mobile. Overall, SC20A displayed features of alternating current universality, including time-temperature superposition, common in other types of disordered ion-conducting media. The presence of long-range transport and its sensitivity to low amounts of impurities imply that from a dynamic perspective the local environment of the surfactants are substantially diverse and a minority fraction, such as at the edge of the crystallite (gallery and aluminosilicate layer), may dominate the lower-frequency dielectric response.

18.
J Phys Chem B ; 109(38): 17868-78, 2005 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16853292

RESUMO

With the use of high-resolution transmission electron microscopy the structure and morphology of montmorillonite (MMT), a material of current interest for use in polymer nanocomposites, was characterized. Using both imaging theory and experiment, the procedures needed to generate lattice images from MMT were established. These procedures involve careful control of the microscope's objective lens defocus to maximize contrast from features of a certain size, as well as limiting the total dose of electrons received by the sample. Direct images of the MMT lattice were obtained from neat Na+ MMT, organically modified MMT, and organically modified MMT/epoxy nanocomposites. The degree of crystallinity and turbostratic disorder were characterized using electron diffraction and high-resolution electron microscopy (HREM). Also, the extent of the MMT sheets to bend when processed into an epoxy matrix was directly visualized. A minimum radius of curvature tolerable for a single MMT sheet during bending deformation was estimated to be 15 nm, and from this value a critical failure strain of 0.033 was calculated. HREM can be used to improve the understanding of the structure of polymer nanocomposites at the nanometer-length scale.

19.
ACS Appl Mater Interfaces ; 7(50): 27624-31, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26618850

RESUMO

A technique is reported for measuring and mapping the maximum internal temperature of a structural epoxy resin with high spatial resolution via the optically detected shape transformation of embedded gold nanorods (AuNRs). Spatially resolved absorption spectra of the nanocomposites are used to determine the frequencies of surface plasmon resonances. From these frequencies the AuNR aspect ratio is calculated using a new analytical approximation for the Mie-Gans scattering theory, which takes into account coincident changes in the local dielectric. Despite changes in the chemical environment, the calculated aspect ratio of the embedded nanorods is found to decrease over time to a steady-state value that depends linearly on the temperature over the range of 100-200 °C. Thus, the optical absorption can be used to determine the maximum temperature experienced at a particular location when exposure times exceed the temperature-dependent relaxation time. The usefulness of this approach is demonstrated by mapping the temperature of an internally heated structural epoxy resin with 10 µm lateral spatial resolution.

20.
Chem Sci ; 6(11): 6413-6419, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30090261

RESUMO

C-C coupling reactions are of great importance in the synthesis of numerous organic compounds, where Pd nanoparticle catalyzed systems represent new materials to efficiently drive these reactions. Despite their pervasive utility, the catalytic mechanism of these particle-based reactions remains highly contested. Herein we present evidence of an atom leaching mechanism for Stille coupling under aqueous conditions using peptide-capped Pd nanoparticles. EXAFS analysis revealed Pd coordination changes in the nanoparticle consistent with Pd atom abstraction, where sizing analysis by SAXS confirmed particle size changes associated with a leaching process. It is likely that recently discovered highly disordered surface Pd atoms are the favored catalytic active sites and are leached during oxidative addition, resulting in smaller particles. Probing the mechanism of nanoparticle-driven C-C coupling reactions through structural analyses provides fundamental information concerning these active sites and their reactivity at the atomic-scale, which can be used to improve catalytic performance to meet important sustainability goals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA