Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RSC Adv ; 14(11): 7867-7876, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38449821

RESUMO

Free chlorine is widely used to disinfect water used for drinking and food processing. This requires highly sensitive, simple, and capable continuous-measurement sensors to enable the concentration of free chlorine in water to be monitored and controlled. Free chlorine sensors based on solution-gated graphene field-effect transistors (GFETs) are a suitable platform for highly sensitive and continuous measurements. However, their sensing mechanisms require further elucidation to improve their performance. In this study, we focused on the gate electrode and investigated its influence on the sensing performance. Using the free chlorine sensor based on the solution-gate GFET, we showed that the Dirac point voltage in the transfer curve changed significantly as the free chlorine concentration changed, and the electric double-layer capacitance of the gate electrode decreased. Furthermore, we demonstrated that a solution-gated GFET using graphene or boron-doped diamond as the gate electrode could be used to detect changes in the free chlorine concentration in the concentration range of tap water. The sensing performance in the low concentration range benefits from the wide potential window of carbon-based electrodes, which do not have electrochemically active sites. Using these carbon-based materials as gate electrodes, GFETs have the potential to be used as durable sensors that are resistant to surface fouling and oxidation.

2.
Sci Rep ; 13(1): 13878, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620543

RESUMO

Graphene has been investigated as a transparent conductive film for use in a variety of devices, and in recent years it has shown promise for use in millimeter-wave devices as 5G technology. In this study, we applied single-layer (SL), triple-layer (3L), and P-type doped 3L graphene to coplanar waveguide (CPW) transmission lines and obtained transmission characteristics (S21) from 1 to 50 GHz, which covered the 5G band. Furthermore, an equivalent circuit model of the CPW used in the measurements was constructed and simulations were performed, which showed good agreement with the measured results. The results validated the transmission properties of the graphene and the contact impedance at the interface between electrodes and the graphene in CPW circuits, which are necessary parameters for designing antennas using graphene. In addition, by comparing the transmission loss of three types of graphene, the parameters for improving the transmission characteristics were clarified.

3.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065145

RESUMO

The photoelectron momentum microscope (PMM) in operation at BL6U, an undulator-based soft x-ray beamline at the UVSOR Synchrotron Facility, offers a new approach for µm-scale momentum-resolved photoelectron spectroscopy (MRPES). A key feature of the PMM is that it can very effectively reduce radiation-induced damage by directly projecting a single photoelectron constant energy contour in reciprocal space with a radius of a few Å-1 or real space with a radius of a few 100 µm onto a two-dimensional detector. This approach was applied to three-dimensional valence band structure E(k) and E(r) measurements ("stereography") as functions of photon energy (hν), its polarization (e), detection position (r), and temperature (T). In this study, we described some examples of possible measurement techniques using a soft x-ray PMM. We successfully applied this stereography technique to µm-scale MRPES to selectively visualize the single-domain band structure of twinned face-centered-cubic Ir thin films grown on Al2O3(0001) substrates. The photon energy dependence of the photoelectron intensity on the Au(111) surface state was measured in detail within the bulk Fermi surface. By changing the temperature of 1T-TaS2, we clarified the variations in the valence band dispersion associated with chiral charge-density-wave phase transitions. Finally, PMMs for valence band stereography with various electron analyzers were compared, and the advantages of each were discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA