Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(7): 2142-2148, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38323571

RESUMO

Spins confined to point defects in atomically thin semiconductors constitute well-defined atomic-scale quantum systems that are being explored as single-photon emitters and spin qubits. Here, we investigate the in-gap electronic structure of individual sulfur vacancies in molybdenum disulfide (MoS2) monolayers using resonant tunneling scanning probe spectroscopy in the Coulomb blockade regime. Spectroscopic mapping of defect wave functions reveals an interplay of local symmetry breaking by a charge-state-dependent Jahn-Teller lattice distortion that, when combined with strong (≃100 meV) spin-orbit coupling, leads to a locking of an unpaired spin-1/2 magnetic moment to the lattice at low temperature, susceptible to lattice strain. Our results provide new insights into the spin and electronic structure of vacancy-induced in-gap states toward their application as electrically and optically addressable quantum systems.

2.
Phys Rev Lett ; 128(21): 216402, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35687466

RESUMO

Negatively charged boron vacancy (V_{B}^{-}) centers in hexagonal boron nitride (h-BN) are promising spin defects in a van der Waals crystal. Understanding the spin properties of the excited state (ES) is critical for realizing dynamic nuclear polarization. Here, we report zero-field splitting in the ES of D_{ES}=2160 MHz and its associated optically detected magnetic resonance (ODMR) contrast of 12% at cryogenic temperature. In contrast to nitrogen vacancy (NV^{-}) centers in diamond, the ODMR contrast of V_{B}^{-} centers is more prominent at cryotemperature than at room temperature. The ES has a g factor similar to the ground state. The ES photodynamics is further elucidated by measuring the level anticrossing of the V_{B}^{-} defects under varying external magnetic fields. Our results provide important information for utilizing the spin defects of h-BN in quantum technology.

3.
Nature ; 511(7507): 70-4, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24990747

RESUMO

The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).

4.
Proc Natl Acad Sci U S A ; 110(49): 19695-700, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24255105

RESUMO

Several logical qubits and quantum gates have been proposed for semiconductor quantum dots controlled by voltages applied to top gates. The different schemes can be difficult to compare meaningfully. Here we develop a theoretical framework to evaluate disparate qubit-gating schemes on an equal footing. We apply the procedure to two types of double-dot qubits: the singlet-triplet and the semiconducting quantum dot hybrid qubit. We investigate three quantum gates that flip the qubit state: a DC pulsed gate, an AC gate based on logical qubit resonance, and a gate-like process known as stimulated Raman adiabatic passage. These gates are all mediated by an exchange interaction that is controlled experimentally using the interdot tunnel coupling g and the detuning [Symbol: see text], which sets the energy difference between the dots. Our procedure has two steps. First, we optimize the gate fidelity (f) for fixed g as a function of the other control parameters; this yields an f(opt)(g) that is universal for different types of gates. Next, we identify physical constraints on the control parameters; this yields an upper bound f(max) that is specific to the qubit-gate combination. We show that similar gate fidelities (~99:5%) should be attainable for singlet-triplet qubits in isotopically purified Si, and for hybrid qubits in natural Si. Considerably lower fidelities are obtained for GaAs devices, due to the fluctuating magnetic fields ΔB produced by nuclear spins.


Assuntos
Técnicas Eletroquímicas/métodos , Modelos Químicos , Pontos Quânticos/química , Magnetismo
5.
Phys Rev Lett ; 109(25): 250503, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23368440

RESUMO

A quantum-dot hybrid qubit formed from three electrons in a double quantum dot has the potential for great speed, due to the presence of level crossings where the qubit becomes chargelike. Here, we show how to exploit the level crossings to implement fast pulsed gating. We develop one- and two-qubit dc quantum gates that are simpler than the previously proposed ac gates. We obtain closed-form solutions for the control sequences and show that the gates are fast (subnanosecond) and can achieve high fidelities.

6.
Phys Rev Lett ; 108(14): 140503, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22540779

RESUMO

We propose a quantum dot qubit architecture that has an attractive combination of speed and fabrication simplicity. It consists of a double quantum dot with one electron in one dot and two electrons in the other. The qubit itself is a set of two states with total spin quantum numbers S(2)=3/4 (S=1/2) and S(z)=-1/2, with the two different states being singlet and triplet in the doubly occupied dot. Gate operations can be implemented electrically and the qubit is highly tunable, enabling fast implementation of one- and two-qubit gates in a simpler geometry and with fewer operations than in other proposed quantum dot qubit architectures with fast operations. Moreover, the system has potentially long decoherence times. These are all extremely attractive properties for use in quantum information processing devices.

7.
Phys Rev Lett ; 106(18): 186801, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21635116

RESUMO

Studies of electronic charge transport through semiconductor double quantum dots rely on a conventional "hole" model of transport in the three-electron regime. We show that experimental measurements of charge transport through a Si double quantum dot in this regime cannot be fully explained using the conventional picture. Using a Hartree-Fock (HF) formalism and relevant HF energy parameters extracted from transport data in the multiple-electron regime, we identify a novel spin-flip cotunneling process that lifts a singlet blockade.

8.
Phys Rev Lett ; 106(15): 156804, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21568595

RESUMO

We demonstrate single-shot readout of a silicon quantum dot spin qubit, and we measure the spin relaxation time T1. We show that the rate of spin loading can be tuned by an order of magnitude by changing the amplitude of a pulsed-gate voltage, and the fraction of spin-up electrons loaded can also be controlled. This tunability arises because electron spins can be loaded through an orbital excited state. Using a theory that includes excited states of the dot and energy-dependent tunneling, we find that a global fit to the loading rate and spin-up fraction is in good agreement with the data.

9.
Nat Commun ; 5: 3020, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24389977

RESUMO

An important goal in the manipulation of quantum systems is the achievement of many coherent oscillations within the characteristic dephasing time T2(*). Most manipulations of electron spins in quantum dots have focused on the construction and control of two-state quantum systems, or qubits, in which each quantum dot is occupied by a single electron. Here we perform quantum manipulations on a system with three electrons per double quantum dot. We demonstrate that tailored pulse sequences can be used to induce coherent rotations between three-electron quantum states. Certain pulse sequences yield coherent oscillations fast enough that more than 100 oscillations are visible within a T2(*) time. The minimum oscillation frequency we observe is faster than 5 GHz. The presence of the third electron enables very fast rotations to all possible states, in contrast to the case when only two electrons are used, in which some rotations are slow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA