Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plants (Basel) ; 9(5)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422935

RESUMO

Understanding the pattern of species distribution and the underlying mechanism is essential for conservation planning. Several climatic variables determine the species diversity, and the dependency of species on climate motivates ecologists and bio-geographers to explain the richness patterns along with elevation and environmental correlates. We used interpolated elevational distribution data to examine the relative importance of climatic variables in determining the species richness pattern of 26 species of gymnosperms in the longest elevation gradients in the world. Thirteen environmental variables were divided into three predictors set representing each hypothesis model (energy-water, physical-tolerance, and climatic-seasonality); to explain the species richness pattern of gymnosperms along the elevational gradient. We performed generalized linear models and variation partitioning to evaluate the relevant role of environmental variables on species richness patterns. Our findings showed that the gymnosperms' richness formed a hump-shaped distribution pattern. The individual effect of energy-water predictor set was identified as the primary determinant of species richness. While, the joint effects of energy-water and physical-tolerance predictors have explained highest variations in gymnosperm distribution. The multiple environmental indicators are essential drivers of species distribution and have direct implications in understanding the effect of climate change on the species richness pattern.

2.
PLoS One ; 12(6): e0177548, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28591175

RESUMO

The source populations of tigers are mostly confined to protected areas, which are now becoming isolated. A landscape scale conservation strategy should strive to facilitate dispersal and survival of dispersing tigers by managing habitat corridors that enable tigers to traverse the matrix with minimal conflict. We present evidence for tiger dispersal along transboundary protected areas complexes in the Terai Arc Landscape, a priority tiger landscape in Nepal and India, by comparing camera trap data, and through population models applied to the long term camera trap data sets. The former showed that 11 individual tigers used the corridors that connected the transboundary protected areas. The estimated population growth rates using the minimum observed population size in two protected areas in Nepal, Bardia National Park and Suklaphanta National Park showed that the increases were higher than expected from growth rates due to in situ reproduction alone. These lines of evidence suggests that tigers are recolonizing Nepal's protected areas from India, after a period of population decline, and that the tiger populations in the transboundary protected areas complexes may be maintained as meta-population. Our results demonstrate the importance of adopting a landscape-scale approach to tiger conservation, especially to improve population recovery and long term population persistence.


Assuntos
Conservação dos Recursos Naturais , Dinâmica Populacional , Tigres/fisiologia , Animais , Ecossistema , Índia , Modelos Teóricos , Nepal , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA