RESUMO
Human migration and mobility drives major societal phenomena including epidemics, economies, innovation, and the diffusion of ideas. Although human mobility and migration have been heavily constrained by geographic distance throughout the history, advances, and globalization are making other factors such as language and culture increasingly more important. Advances in neural embedding models, originally designed for natural language, provide an opportunity to tame this complexity and open new avenues for the study of migration. Here, we demonstrate the ability of the model word2vec to encode nuanced relationships between discrete locations from migration trajectories, producing an accurate, dense, continuous, and meaningful vector-space representation. The resulting representation provides a functional distance between locations, as well as a "digital double" that can be distributed, re-used, and itself interrogated to understand the many dimensions of migration. We show that the unique power of word2vec to encode migration patterns stems from its mathematical equivalence with the gravity model of mobility. Focusing on the case of scientific migration, we apply word2vec to a database of three million migration trajectories of scientists derived from the affiliations listed on their publication records. Using techniques that leverage its semantic structure, we demonstrate that embeddings can learn the rich structure that underpins scientific migration, such as cultural, linguistic, and prestige relationships at multiple levels of granularity. Our results provide a theoretical foundation and methodological framework for using neural embeddings to represent and understand migration both within and beyond science.
Assuntos
Idioma , Semântica , Humanos , Aprendizado de Máquina , Aprendizagem , Processamento de Linguagem NaturalRESUMO
Graph embeddings learn the structure of networks and represent it in low-dimensional vector spaces. Community structure is one of the features that are recognized and reproduced by embeddings. We show that an iterative procedure, in which a graph is repeatedly embedded and its links are reweighted based on the geometric proximity between the nodes, reinforces intra-community links and weakens inter-community links, making the clusters of the initial network more visible and more easily detectable. The geometric separation between the communities can become so strong that even a very simple parsing of the links may recover the communities as isolated components with surprisingly high precision. Furthermore, when used as a pre-processing step, our embedding and reweighting procedure can improve the performance of traditional community detection algorithms.
RESUMO
The ever-increasing competitiveness in the academic publishing market incentivizes journal editors to pursue higher impact factors. This translates into journals becoming more selective, and, ultimately, into higher publication standards. However, the fixation on higher impact factors leads some journals to artificially boost impact factors through the coordinated effort of a "citation cartel" of journals. "Citation cartel" behavior has become increasingly common in recent years, with several instances being reported. Here, we propose an algorithm-named CIDRE-to detect anomalous groups of journals that exchange citations at excessively high rates when compared against a null model that accounts for scientific communities and journal size. CIDRE detects more than half of the journals suspended from Journal Citation Reports due to anomalous citation behavior in the year of suspension or in advance. Furthermore, CIDRE detects many new anomalous groups, where the impact factors of the member journals are lifted substantially higher by the citations from other member journals. We describe a number of such examples in detail and discuss the implications of our findings with regard to the current academic climate.
RESUMO
Effective control of an epidemic relies on the rapid discovery and isolation of infected individuals. Because many infectious diseases spread through interaction, contact tracing is widely used to facilitate case discovery and control. However, what determines the efficacy of contact tracing has not been fully understood. Here we reveal that, compared with 'forward' tracing (tracing to whom disease spreads), 'backward' tracing (tracing from whom disease spreads) is profoundly more effective. The effectiveness of backward tracing is due to simple but overlooked biases arising from the heterogeneity in contacts. We argue that, even if the directionality of infection is unknown, it is possible to perform backward-aiming contact tracing. Using simulations on both synthetic and high-resolution empirical contact datasets, we show that strategically executed contact tracing can prevent a substantial fraction of transmissions with a higher efficiency-in terms of prevented cases per isolation-than case isolation alone. Our results call for a revision of current contact-tracing strategies so that they leverage all forms of bias. It is particularly crucial that we incorporate backward and deep tracing in a digital context while adhering to the privacy-preserving requirements of these new platforms.
RESUMO
Network analysis has been applied to various correlation matrix data. Thresholding on the value of the pairwise correlation is probably the most straightforward and common method to create a network from a correlation matrix. However, there have been criticisms on this thresholding approach such as an inability to filter out spurious correlations, which have led to proposals of alternative methods to overcome some of the problems. We propose a method to create networks from correlation matrices based on optimization with regularization, where we lay an edge between each pair of nodes if and only if the edge is unexpected from a null model. The proposed algorithm is advantageous in that it can be combined with different types of null models. Moreover, the algorithm can select the most plausible null model from a set of candidate null models using a model selection criterion. For three economic datasets, we find that the configuration model for correlation matrices is often preferred to standard null models. For country-level product export data, the present method better predicts main products exported from countries than sample correlation matrices do.
RESUMO
Maritime transport accounts for a majority of trades in volume, of which 70% in value is carried by container ships that transit regular routes on fixed schedules in the ocean. In the present paper, we analyse a data set of global liner shipping as a network of ports. In particular, we construct the network of the ports as the one-mode projection of a bipartite network composed of ports and ship routes. Like other transportation networks, global liner shipping networks may have core-periphery structure, where a core and a periphery are groups of densely and sparsely interconnected nodes, respectively. Core-periphery structure may have practical implications for understanding the robustness, efficiency and uneven development of international transportation systems. We develop an algorithm to detect core-periphery pairs in a network, which allows one to find core and peripheral nodes on different scales and uses a configuration model that accounts for the fact that the network is obtained by the one-mode projection of a bipartite network. We also found that most ports are core (as opposed to peripheral) ports and that ports in some countries in Europe, America and Asia belong to a global core-periphery pair across different scales, whereas ports in other countries do not.
RESUMO
Many empirical networks have community structure, in which nodes are densely interconnected within each community (i.e., a group of nodes) and sparsely across different communities. Like other local and meso-scale structure of networks, communities are generally heterogeneous in various aspects such as the size, density of edges, connectivity to other communities and significance. In the present study, we propose a method to statistically test the significance of individual communities in a given network. Compared to the previous methods, the present algorithm is unique in that it accepts different community-detection algorithms and the corresponding quality function for single communities. The present method requires that a quality of each community can be quantified and that community detection is performed as optimisation of such a quality function summed over the communities. Various community detection algorithms including modularity maximisation and graph partitioning meet this criterion. Our method estimates a distribution of the quality function for randomised networks to calculate a likelihood of each community in the given network. We illustrate our algorithm by synthetic and empirical networks.
RESUMO
Correlation matrices are a major type of multivariate data. To examine properties of a given correlation matrix, a common practice is to compare the same quantity between the original correlation matrix and reference correlation matrices, such as those derived from random matrix theory, that partially preserve properties of the original matrix. We propose a model to generate such reference correlation and covariance matrices for the given matrix. Correlation matrices are often analyzed as networks, which are heterogeneous across nodes in terms of the total connectivity to other nodes for each node. Given this background, the present algorithm generates random networks that preserve the expectation of total connectivity of each node to other nodes, akin to configuration models for conventional networks. Our algorithm is derived from the maximum entropy principle. We will apply the proposed algorithm to measurement of clustering coefficients and community detection, both of which require a null model to assess the statistical significance of the obtained results.
RESUMO
With a core-periphery structure of networks, core nodes are densely interconnected, peripheral nodes are connected to core nodes to different extents, and peripheral nodes are sparsely interconnected. Core-periphery structure composed of a single core and periphery has been identified for various networks. However, analogous to the observation that many empirical networks are composed of densely interconnected groups of nodes, i.e., communities, a network may be better regarded as a collection of multiple cores and peripheries. We propose a scalable algorithm to detect multiple nonoverlapping groups of core-periphery structure in a network. We illustrate our algorithm using synthesized and empirical networks. For example, we find distinct core-periphery pairs with different political leanings in a network of political blogs and separation between international and domestic subnetworks of airports in some single countries in a worldwide airport network.