Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurochem ; 168(7): 1402-1419, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38445395

RESUMO

The role of nitrergic system in modulating the action of psychostimulants on reward processing is well established. However, the relevant anatomical underpinnings and scope of the involved interactions with mesolimbic dopaminergic system have not been clarified. Using immunohistochemistry, we track the changes in neuronal nitric oxide synthase (nNOS) containing cell groups in the animals conditioned to intracranial self-stimulation (ICSS) via an electrode implanted in the lateral hypothalamus-medial forebrain bundle (LH-MFB) area. An increase in the nNOS immunoreactivity was noticed in the cells and fibers in the ventral tegmental area (VTA) and nucleus accumbens shell (AcbSh), the primary loci of the reward system. In addition, nNOS was up-regulated in the nucleus accumbens core (AcbC), vertical limb of diagonal band (VDB), locus coeruleus (LC), lateral hypothalamus (LH), superficial gray layer (SuG) of the superior colliculus, and periaqueductal gray (PAG). The brain tissue fragments drawn from these areas showed a change in nNOS mRNA expression, but in opposite direction. Intracerebroventricular (icv) administration of nNOS inhibitor, 7-nitroindazole (7-NI) showed decreased lever press activity in a dose-dependent manner in ICSS task. While an increase in the dopamine (DA) and 3, 4-dihydroxyphenylacetic acid (DOPAC) efflux was noted in the microdialysates collected from the AcbSh of ICSS rats, pre-administration of 7-NI (icv route) attenuated the response. The study identifies nitrergic centers that probably mediate sensory, cognitive, and motor components of the goal-directed behavior.


Assuntos
Óxido Nítrico Sintase Tipo I , Autoestimulação , Animais , Masculino , Ratos , Óxido Nítrico Sintase Tipo I/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Ratos Sprague-Dawley , Indazóis/farmacologia , Inibidores Enzimáticos/farmacologia
2.
J Neurochem ; 158(5): 1172-1185, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34287909

RESUMO

Neuropeptide cocaine- and amphetamine-regulated transcript (CART) is known to influence the activity of the canonical mesolimbic dopaminergic pathway and modulate reward seeking behaviour. CART neurons of the lateral hypothalamus (LH) send afferents to the ventral tegmental area (VTA) and paraventricular thalamic nucleus (PVT) and these nuclei, in turn, send secondary projections to nucleus accumbens. We try to dissect the precise sites of CART's action in these circuits in promoting reward. Rats were implanted with bipolar electrode targeted at the lateral hypothalamus-medial forebrain bundle (LH-MFB) and trained to press the lever through intracranial self-stimulation (ICSS) protocol. CART (55-102) administered directly into posterior VTA (pVTA) or PVT of the conditioned rats significantly increased the number of lever presses, indicating reward-promoting activity of the peptide. Concomitant increase in dopamine (DA) and 3, 4-dihydroxyphenylacetic acid (DOPAC) efflux was noted in the microdialysate collected from the nucleus accumbens shell (AcbSh). On the other hand, immunoneutralization of endogenous CART with CART antibodies injected directly in the pVTA or PVT reduced the lever press activity as well as DA and DOPAC efflux in the AcbSh. Injection of CART (1-39) in pVTA or PVT was ineffective. We suggest that CART cells in the LH-MFB area send afferents to (a) pVTA and influence dopaminergic neurons projecting to AcbSh and (b) PVT, from where the secondary neurons may feed into the AcbSh. Excitation of the CARTergic pathway to the pVTA as well as the PVT seems to promote DA release in the AcbSh and contribute to the generation of reward.


Assuntos
Dopamina/metabolismo , Rede Nervosa/metabolismo , Proteínas do Tecido Nervoso/administração & dosagem , Proteínas do Tecido Nervoso/metabolismo , Núcleo Accumbens/metabolismo , Recompensa , Animais , Eletrodos Implantados , Masculino , Microdiálise/métodos , Rede Nervosa/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Wistar
3.
Addict Biol ; 24(1): 51-64, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29193459

RESUMO

Although chronic nicotine administration does not affect memory, its withdrawal causes massive cognitive deficits. The underlying mechanisms, however, have not been understood. We test the role of cocaine- and amphetamine-regulated transcript peptide (CART), a neuropeptide known for its procognitive properties, in this process. The mice on chronic nicotine treatment/withdrawal were subjected to novel object recognition task. The capability of the animal to discriminate between the novel and familiar objects was tested and represented as discrimination index (DI); reduction in the index suggested amnesia. Nicotine for 49 days had no effect on DI, but 8-hour withdrawal caused a significant reduction, followed by full recovery at 24-hour withdrawal timepoint. Bilateral CART infusion in dorsal hippocampus rescued deficits in DI at 8-hours, whereas CART-antibody infusion into the dorsal hippocampus attenuated the recovery at 24-hours. Commensurate changes were observed in the CART as well as CART mRNA profiles in the hippocampus. CART mRNA expression and the peptide immunoreactivity did not change significantly following chronic nicotine treatment. However, there was a significant reduction at 8-hour withdrawal, followed by a drastic increase in CART immunoreactivity as well as CART mRNA at 24-hour withdrawal, compared with 8-hour withdrawal. Distinct α7-nicotinic receptor immunoreactivity was detected on the hippocampal CART neurons, suggesting cholinergic inputs. An increase in the synaptophysin immunoreactive elements around CART cells in the dentate gyrus, cornu ammonis 3 and subiculum at 24-hour post-withdrawal timepoint suggested neuronal plasticity. CART circuit dynamics in the hippocampus seems to modulate short-term memory associated with nicotine withdrawal.


Assuntos
Proteínas do Tecido Nervoso/farmacologia , Nicotina/efeitos adversos , Agonistas Nicotínicos/efeitos adversos , Reconhecimento Psicológico/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/psicologia , Animais , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/metabolismo , Giro Denteado/citologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Síndrome de Abstinência a Substâncias/etiologia , Síndrome de Abstinência a Substâncias/genética , Sinaptofisina/efeitos dos fármacos , Sinaptofisina/metabolismo
4.
Neurobiol Dis ; 106: 101-109, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28663119

RESUMO

Minimal traumatic brain injury (MTBI) often transforms into chronic neuropsychiatric conditions including anxiety, the underlying mechanisms of which are largely unknown. In the present study, we employed the closed-head injury paradigm to induce MTBI in rats and examined whether DNA methylation can explain long-term changes in the expression of the brain-derived neurotrophic factor (BDNF) in the amygdala as well as trauma-induced anxiety-like behaviors. The MTBI caused anxiety-like behaviors and altered the expression of DNA methyltransferase (DNMT) isoforms (DNMT1, DNMT3a, and DNMT3b) and factors involved in DNA demethylation such as the growth arrest and DNA damage 45 (GADD45a and GADD45b). After 30days of MTBI, the over-expression of DNMT3a and DNMT3b corresponded to heightened DNMT activity, whereas the mRNA levels of GADD45a and GADD45b were declined. The methylated cytosine levels at the BDNF promoters (Ip, IVp and IXp) were increased in the amygdala of the trauma-induced animals; these coincided negatively with the mRNA levels of exon IV and IXa, but not of exon I. Interestingly, treatment with 5-azacytidine, a pan DNMT inhibitor, normalized the MTBI-induced DNMT activity and DNA hypermethylation at exon IVp and IXp. Furthermore, 5-azacytidine also corrected the deficits in the expression of exons IV and IXa and reduced the anxiety-like behaviors. These results suggest that the DNMT-mediated DNA methylation at the BDNF IVp and IXp might be involved in the regulation of BDNF gene expression in the amygdala. Further, it could also be related to MTBI-induced anxiety-like behaviors via the regulation of synaptic plasticity.


Assuntos
Tonsila do Cerebelo/metabolismo , Ansiedade/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/psicologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Metilação de DNA , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Ansiedade/genética , Azacitidina/farmacologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/genética , Proteínas de Ciclo Celular/metabolismo , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/fisiologia , Inibidores Enzimáticos/farmacologia , Expressão Gênica/efeitos dos fármacos , Masculino , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Ratos Wistar
5.
Int J Neuropsychopharmacol ; 20(9): 758-768, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575455

RESUMO

Background: Adolescent intermittent ethanol exposure causes long-lasting alterations in brain epigenetic mechanisms. Melanocortin and neuropeptide Y signaling interact and are affected by ethanol exposure in the brain. Here, the persistent effects of adolescent intermittent ethanol on alpha-melanocyte stimulating hormone, melanocortin 4 receptor, and neuropeptide Y expression and their regulation by histone acetylation mechanisms were investigated in adulthood. Methods: Male rats were exposed to adolescent intermittent ethanol (2 g/kg, i.p.) or volume-matched adolescent intermittent saline from postnatal days 28 to 41 and allowed to grow to postnatal day 92. Anxiety-like behaviors were measured by the elevated plus-maze test. Brain regions from adult rats were used to examine changes in alpha-melanocyte stimulating hormone, melanocortin 4 receptor, and neuropeptide Y expression and the histone acetylation status of their promoters. Results: Adolescent intermittent ethanol-exposed adult rats displayed anxiety-like behaviors and showed increased pro-opiomelanocortin mRNA levels in the hypothalamus and increased melanocortin 4 receptor mRNA levels in both the amygdala and hypothalamus compared with adolescent intermittent saline-exposed adult rats. The alpha-Melanocyte stimulating hormone and melanocortin 4 receptor protein levels were increased in the central and medial nucleus of the amygdala, paraventricular nucleus, and arcuate nucleus of the hypothalamus in adolescent intermittent ethanol-exposed compared with adolescent intermittent saline-exposed adult rats. Neuropeptide Y protein levels were decreased in the central and medial nucleus of the amygdala of adolescent intermittent ethanol-exposed compared with adolescent intermittent saline-exposed adult rats. Histone H3K9/14 acetylation was decreased in the neuropeptide Y promoter in the amygdala but increased in the melanocortin 4 receptor gene promoter in the amygdala and the melanocortin 4 receptor and pro-opiomelanocortin promoters in the hypothalamus of adolescent intermittent ethanol-exposed adult rats compared with controls. Conclusions: Increased melanocortin and decreased neuropeptide Y activity due to changes in histone acetylation in emotional brain circuitry may play a role in adolescent intermittent ethanol-induced anxiety phenotypes in adulthood.


Assuntos
Encéfalo , Depressores do Sistema Nervoso Central/toxicidade , Etanol/toxicidade , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Histonas/metabolismo , Neuropeptídeo Y/metabolismo , alfa-MSH/metabolismo , Acetilação/efeitos dos fármacos , Animais , Ansiedade/induzido quimicamente , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Imunoprecipitação da Cromatina , Etanol/farmacologia , Feminino , Humanos , Masculino , Gravidez , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo
6.
Addict Biol ; 22(2): 291-302, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26549324

RESUMO

Although dysregulation of the dopaminergic mesolimbic system is generally considered central to addiction, the involvement of other circuits is increasingly being appreciated. An interaction between locus coeruleus (LC) noradrenergic neurons and the posterior ventral tegmental area (pVTA) dopaminergic system, in the processing of drug-triggered reward, has been suggested, but not demonstrated in behaving animals. Herein, we try to tease out the precise role of noradrenergic neurons in the LC-VTA circuit in mediating reward and reinforcement behavior associated with ethanol. In the standard two-lever (active/inactive) operant paradigm, the rats were trained to self-administer ethanol in pVTA and subjected to pharmacological intervention. Intra-pVTA administration of phenylephrine (alpha-1 adrenoceptor agonist) increased ethanol self-administration, while prazosin and disulfiram (agents that reduce noradrenergic tone) produced opposite effects. While degeneration [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride, DSP-4, intraperitoneal route] or silencing (lidocaine or muscimol, both via intra-LC route) of the LC noradrenergic neurons decreased, phenylephrine via the intra-LC route reinstated ethanol self-administration. Furthermore, lidocaine reduced ethanol self-administration, but the effect was fully attenuated by noradrenaline given directly in the pVTA. This suggests that the feedback signals from LC to pVTA are necessary to sustain the ethanol self-infusion activity. Ethanol self-administration significantly increased tyrosine hydroxylase immunoreactivity in pVTA and LC; the response was blocked by DSP-4 pre-treatment. While dopamine D1 , but not D2 , receptors were localized on noradrenergic LC neurons, pre-treatment with SCH-23390 (intra-LC) dampened the lever press activity. We suggest that two-way communications between VTA and LC regions is essential for ethanol-triggered reinforcement behavior.


Assuntos
Neurônios Adrenérgicos/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Locus Cerúleo/efeitos dos fármacos , Reforço Psicológico , Área Tegmentar Ventral/efeitos dos fármacos , Inibidores de Acetaldeído Desidrogenases/farmacologia , Adrenérgicos/farmacologia , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Anestésicos Locais/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Benzazepinas/farmacologia , Benzilaminas/farmacologia , Depressores do Sistema Nervoso Central/administração & dosagem , Condicionamento Operante , Dissulfiram/farmacologia , Antagonistas de Dopamina/farmacologia , Etanol/administração & dosagem , Agonistas de Receptores de GABA-A/farmacologia , Lidocaína/farmacologia , Locus Cerúleo/metabolismo , Masculino , Muscimol/farmacologia , Fenilefrina/farmacologia , Prazosina/farmacologia , Ratos , Ratos Wistar , Receptores de Dopamina D1/antagonistas & inibidores , Recompensa , Autoadministração , Tirosina 3-Mono-Oxigenase/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/metabolismo
7.
Hippocampus ; 26(10): 1313-27, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27258934

RESUMO

Although cocaine- and amphetamine-regulated transcript peptide (CART) is detected in several cortical and subcortical areas, its role in higher functions has been largely ignored. We examined the significance of CART in memory formation and tested if the downstream actions of CART involve N-methyl-d-aspartate (NMDA) activated extra-cellular signal-regulated kinase (ERK). Newly formed memory was evaluated using novel object recognition test consisting of familiarization (T1) and choice trials (T2). The choice trials were performed at two time points: 30-min (T230-min ) and 24-h (T224-h ) postacquisition. In choice trial (T230-min ), vehicle control rats explored the novel object for significantly longer duration than the familiar object indicating intact memory formation. However, CART-antibody, U0126 [ERK antagonist, both via intracerebroventricular (icv) or intrahippocampal (ih) route] or MK-801 (NMDA antagonist; intraperitoneal) treated rats spent less time exploring novel objects; CART peptide (icv or ih) was ineffective. During choice trial at T224-h , a significant decrease in novel object exploration time was noticed in vehicle control rats suggesting amnesia. However, treatment with CART, prior to familiarization trial (T1), promoted exploration of the novel object even at T224-h . Pretreatment with U0126 or MK-801 blocked pro-cognitive-like effect of CART suggesting involvement of NMDA-ERK pathway in CART's action. Animals subjected to the object familiarization trial showed a drastic increase in the CART-immunoreactivity in the cells of cornu ammonis 3 and polymorph layer of dentate gyrus, and fibers within ento- (ENT) and peri-rhinal (PRH) cortices. Western blot analysis revealed that CART treatment significantly up-regulated the expression of phospo-ERK1/2 in hippocampus, ENT and PRH. This effect was attenuated following pretreatment with U0126 or MK-801, suggesting the activation of ERK signaling cascade through NMDA receptors. Thus, CART system seems to play an important role in recognition memory and that these effects may be mediated by NMDA receptors-ERK signaling in the ENT/PRH-hippocampal circuit. © 2016 Wiley Periodicals, Inc.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Reconhecimento Psicológico/fisiologia , Animais , Butadienos/farmacologia , Comportamento de Escolha/efeitos dos fármacos , Comportamento de Escolha/fisiologia , Cognição/efeitos dos fármacos , Cognição/fisiologia , Maleato de Dizocilpina/farmacologia , Córtex Entorrinal/efeitos dos fármacos , Córtex Entorrinal/metabolismo , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Hipocampo/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Masculino , Proteínas do Tecido Nervoso/administração & dosagem , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Testes Neuropsicológicos , Nitrilas/farmacologia , Córtex Perirrinal/efeitos dos fármacos , Córtex Perirrinal/metabolismo , Psicotrópicos/farmacologia , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos
8.
Addict Biol ; 21(4): 766-75, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-25929272

RESUMO

Although modulatory effects of neuropeptide Y (NPY) on ethanol consumption are well established, its role in ethanol reward, in the framework of mesolimbic dopaminergic system, has not been studied. We investigated the influence of nucleus accumbens shell (AcbSh) NPYergic system on ethanol self-administration in posterior ventral tegmental area (p-VTA) using intracranial self-administration paradigm. Rats were stereotaxically implanted with cannulae targeted unilaterally at the right p-VTA and trained to self-administer ethanol (200 mg%) in standard two-lever (active/inactive) operant chamber, an animal model with high predictive validity to test the rewarding mechanisms. Over a period of 7 days, these rats showed a significant increase in the number of lever presses for ethanol self-administration suggesting reinforcement. While intra-AcbSh NPY (1 or 2 ng/rat) or [Leu(31) , Pro(34) ]-NPY (0.5 or 1 ng/rat) dose-dependently increased ethanol self-administration, BIBP3226 (0.4 or 0.8 ng/rat) produced opposite effect. The rats conditioned to self-administer ethanol showed significant increase in the population of NPY-immunoreactive cells and fibres in the AcbSh, central nucleus of amygdala (CeA), hypothalamic arcuate nucleus (ARC) and lateral part of bed nucleus of stria terminalis as compared with that in the naïve rats. Neuronal tracing studies showed that NPY innervations in the AcbSh may derive from the neurons of ARC and CeA. As NPY and dopamine systems in reward areas are known to interact, we suggest that NPY inputs from ARC and CeA may play an important role in modulation of the dopaminergic system in the AcbSh and consequently influence the ethanol induced reward and addiction.


Assuntos
Depressores do Sistema Nervoso Central/administração & dosagem , Etanol/administração & dosagem , Neuropeptídeo Y/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Recompensa , Autoadministração
9.
Addict Biol ; 20(2): 302-15, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24635847

RESUMO

Although the role of alpha-melanocyte stimulating hormone (α-MSH) in alcohol seeking behaviour in rats has been demonstrated, the underlying mechanisms are not understood. Herein, we test the hypothesis that α-MSH might have a permissive effect in promoting the reward action of ethanol. Rats were implanted with cannulae targeted at the posterior ventral tegmental area (pVTA), because the site is sensitive to reinforcing effects of ethanol. These rats were trained to self-administer ethanol in standard two-lever (active/inactive) operant chamber test. Each active lever press resulted in self-administration of 100 nl of ethanol (100-300 mg%) containing solution. Over a period of 7 days, ethanol significantly increased the number of lever presses, which was considered as a measure of reward. Because ethanol at 200 mg% resulted in maximum number of lever presses (∼18-20 lever presses/30-minute session), the dose was employed in further studies. While prior administration of melanocortin (MC) agonists, α-MSH or [Nle4,D-Phe7]-alpha-MSH into pVTA, resulted in an 89% increase in lever presses, the response was attenuated following pre-treatment with MC4 receptors (MC4R) antagonist, HS014. In an immunohistochemical study, the brains of rats that were trained to self-infuse ethanol showed significantly increased α-MSH immunoreactivity in the nucleus accumbens shell, bed nucleus of stria terminalis and arcuate nucleus of the hypothalamus. In the pVTA, α-MSH fibres were found to run close to the dopamine cells, labelled with tyrosine hydroxylase antibodies. We suggest that α-MSH-MC4R system in the pVTA might be a part of the neuroadaptive mechanism underlying ethanol addiction.


Assuntos
Alcoolismo/metabolismo , Depressores do Sistema Nervoso Central/administração & dosagem , Etanol/administração & dosagem , Receptor Tipo 4 de Melanocortina/metabolismo , Reforço Psicológico , Área Tegmentar Ventral , alfa-MSH/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Neurônios Dopaminérgicos/metabolismo , Comportamento de Procura de Droga , Etanol/farmacologia , Hipotálamo/metabolismo , Imuno-Histoquímica , Melanocortinas/agonistas , Microinjeções , Núcleo Accumbens/metabolismo , Peptídeos Cíclicos/farmacologia , Ratos , Receptor Tipo 4 de Melanocortina/antagonistas & inibidores , Autoadministração , Núcleos Septais/metabolismo , alfa-MSH/efeitos dos fármacos
10.
Neuroscience ; 556: 96-113, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39103042

RESUMO

The aim of the study is to understand the rationale behind the application of deep brain stimulation (DBS) in the treatment of depression. Male Wistar rats, rendered depressive with chronic unpredictable mild stress (CUMS) were implanted with electrode in the lateral hypothalamus-medial forebrain bundle (LH-MFB) and subjected to deep brain stimulation (DBS) for 4 h each day for 14 days. DBS rats, as well as controls, were screened for a range of parameters indicative of depressive state. Symptomatic features noticed in CUMS rats like the memory deficit, anhedonia, reduction in body weight and 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels in mPFC and elevated plasma corticosterone were reversed in rats subjected to DBS. DBS arrested CUMS induced degeneration of 5-HT cells in interfascicular region of dorsal raphe nucleus (DRif) and fibers in LH-MFB and induced dendritic proliferation in mPFC neurons. MFB is known to serve as a major conduit for the DRif-mPFC serotoninergic pathway. While the density of serotonin fibers in the LH-MFB circuit was reduced in CUMS, it was upregulated in DBS-treated rats. Furthermore, microinjection of 5-HT1A receptor antagonist, WAY100635 into mPFC countered the positive effects of DBS like the antidepressant and memory-enhancing action. In this background, we suggest that DBS at LH-MFB may exercise positive effect in depressive rats via upregulation of the serotoninergic system. While these data drawn from the experiments on rat provide meaningful clues, we suggest that further studies aimed at understanding the usefulness of DBS at LH-MFB in humans may be rewarding.


Assuntos
Estimulação Encefálica Profunda , Depressão , Feixe Prosencefálico Mediano , Ratos Wistar , Serotonina , Animais , Estimulação Encefálica Profunda/métodos , Masculino , Serotonina/metabolismo , Depressão/terapia , Depressão/metabolismo , Região Hipotalâmica Lateral/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/terapia , Disfunção Cognitiva/terapia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Ratos , Corticosterona/sangue , Ácido Hidroxi-Indolacético/metabolismo , Córtex Pré-Frontal/metabolismo
11.
Mol Neurobiol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987488

RESUMO

Neuropeptide cocaine- and amphetamine-regulated transcript peptide (CARTp) is known to play an important role in reward processing. The rats conditioned to intra-cranial self-stimulation (ICSS) showed massive upregulation of CART protein and mRNA in the vicinity of the electrode implanted to deliver the electric current directly at the lateral hypothalamus (LH)-medial forebrain bundle (MFB) area. However, the underlying mechanisms leading to the upregulation of CART in ICSS animals remain elusive. We tested the putative role of CREB-binding protein (CBP), an epigenetic enzyme with intrinsic histone acetyltransferase (HAT) activity, in regulating CART expression during ICSS. An electrode was implanted in LH-MFB and the rats were conditioned to self-stimulation in an operant chamber. CBP siRNA was delivered ipsilaterally in the LH-MFB to knock-down CBP and the effects on lever press activity were monitored. While ICSS-conditioned rats showed distinct increase in CART, CBP and pCREB levels, enhanced CBP binding and histone acetylation (H3K9ac) were noticed on the CART promoter in chromatin immunoprecipitation assay. Direct infusion of CBP siRNA in the LH-MFB lowered lever press activity, CBP levels, histone acetylation at the CART promoter, and CART mRNA and peptide expression. Co-infusion of CARTp in LH-MFB rescued the waning effects of CBP siRNA on self-stimulation. We suggest that CBP-mediated histone acetylation may play a causal role in CART expression in LH, which in turn may drive the positive reinforcement of lever press activity.

12.
Mol Neurobiol ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872356

RESUMO

Gut microbiota serves in the development and maintenance of phenotype. However, the underlying mechanisms are still in its infancy. The current study shows epigenetic remodelling in the brain as a causal mechanism in the gut microbiota-brain axis. Like in trauma patients, gut dysbiosis and anxiety were comorbid in adult male Wistar rats subjected to repeated mild traumatic brain injuries (rMTBI). rMTBI caused epigenetic dysregulation of brain-derived neurotrophic factor (Bdnf) expression in the amygdala, owing to the formation of transcriptional co-repressor complex due to dynamic interaction between histone deacetylase and DNA methylation modification at the Bdnf gene promoter. The probiosis after faecal microbiota transplantation (FMT) from healthy naïve rats or by administration of single strain probiotic (SSP), Lactobacillus rhamnosus GG (LGG), recuperated rMTBI-induced anxiety. Concurrently, LGG infusion or naïve FMT also dislodged rMTBI-induced co-repressor complex resulting in the normalization of Bdnf expression and neuronal plasticity as measured by Golgi-Cox staining. Furthermore, sodium butyrate, a short-chain fatty acid, produced neurobehavioural effects similar to naïve FMT or LGG administration. Interestingly, the gut microbiota from rMTBI-exposed rats per se was able to provoke anxiety in naïve rats in parallel with BDNF deficits. Therefore, gut microbiota seems to be causally linked with the chromatin remodelling necessary for neuroadaptations via neuronal plasticity which drives experience-dependent behavioural manifestations.

13.
J Pharmacol Toxicol Methods ; 118: 107194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35779851

RESUMO

Strategies drawn at understanding the functional attributes of specific neural circuits often necessitate electrical stimulation and pharmacological manipulation at the same anatomical site. We describe a simple, inexpensive and reliable method to fabricate a bipolar electrode-cannula assembly for delivery of electric pulses and administration of neuroactive agents at the same site in the rat brain. The assembly consisting of a guide cannula, dummy cannula, internal cannula and bipolar electrode was fabricated using syringe needles, wires and simple electronic components. To test the usefulness of the device, it was implanted on the skull of a rat specifically targeting the posterior ventral tegmental area (pVTA). The rat was conditioned to press the lever in intracranial self-stimulation (ICSS) protocol in an operant chamber. The number of lever presses in a 30 min task was monitored. Intra-pVTA administration with bicuculline (GABAA receptor antagonist) increased the lever press activity, while muscimol (GABAA receptor agonist) had opposite effect. The results confirm that the group of neurons responding to the electrical stimulation probably receive GABAergic inputs. The device is light in weight, costs less than a dollar and can be fabricated from readily available components. It can serve a useful purpose in electrically stimulating any given target in the brain - before, during or after pharmacological manipulation at the same locus and may find application in neuropharmacological and neurobehavioral studies.


Assuntos
Cânula , Receptores de GABA-A , Animais , Ratos , Autoestimulação/fisiologia , Estimulação Elétrica , Agonistas de Receptores de GABA-A , Encéfalo , Eletrodos
14.
Neuropharmacology ; 221: 109274, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36195130

RESUMO

The inability to extinguish learned fear is a hallmark of trauma- and stress-related disorders. A form of inhibitory learning called fear extinction is an effective way to treat these disorders. However, the neurobiology of fear extinction has not been clarified. The involvement of a dopaminergic pathway from the ventral tegmental area (VTA) to the nucleus accumbens shell (AcbSh) in fear extinction has been suggested. Several neuropeptide systems, including neuropeptide S (NPS), modulate the activity of VTA dopaminergic neurons. Herein, we investigated the role of NPS in modulating the VTA-AcbSh circuit in fear extinction. While the NPS-containing neurons of the pericoerulear (periLC) area project to the VTA, the recipient cells are equipped with NPS receptors. Using a Pavlovian fear conditioning procedure, we tested the effect of NPS on fear extinction in male Wistar rats. Intra-VTA administration of NPS prior to fear extinction training facilitated the fear extinction learning and memory, however, NPS receptors antagonist had the opposite effect. Fear extinction training increased the dopamine efflux and cFOS immunoreactivity in the AcbSh area of NPS-treated rats compared with the vehicle-injected controls. We suggest that the NPS neurons of the periLC project to the VTA and might facilitate fear extinction by enhancing the activity of mesolimbic dopaminergic circuit.


Assuntos
Dopamina , Neuropeptídeos , Animais , Masculino , Ratos , Dopamina/metabolismo , Neurônios Dopaminérgicos , Extinção Psicológica , Medo , Neuropeptídeos/metabolismo , Núcleo Accumbens , Ratos Wistar , Área Tegmentar Ventral
15.
Mol Neurobiol ; 59(9): 5426-5442, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35705787

RESUMO

Neuroadaptations in neurocircuitry of reward memories govern the persistent and compulsive behaviors. The study of the role of hippocampus in processing of reward memory and its retrieval is critical to our understanding of addiction and relapse. The aim of this study is to probe the epigenetic mechanisms underlying reward memory in the frame of dentate gyrus (DG). To that end, the rats conditioned to the food baited arm of a Y-maze and subjected to memory probe trial. The hippocampus of conditioned rats displayed higher mRNA levels of Ten-eleven translocase 1 (Tet1) and brain-derived neurotrophic factor (Bdnf) after memory probe trial. The DNA hydroxymethylation and TET1 occupancy at the Bdnf promoters showed concomitant increase. Stereotactic administration of Tet1 siRNA in the DG before and after conditioning inhibited reward memory formation and recall, respectively. Administration of Tet1 siRNA impaired the reward memory recall that was reinstated following administration of exogenous BDNF peptide or after wash-off period of 8 days. Infusion of a MEK/ERK inhibitor, U0126 in the DG inhibited reward memory retrieval. The TET1-induced DNA demethylation at the Bdnf promoters raised BDNF levels in the hippocampus, thereby setting the stage for reward memory retrieval. The study underscores the causative role of TET1 in the DG for reward memory formation and recall.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Dioxigenases , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Desmetilação do DNA , Giro Denteado/metabolismo , Hipocampo/metabolismo , RNA Interferente Pequeno , Ratos , Recompensa
16.
Eur J Pharmacol ; 924: 174961, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35443192

RESUMO

Opioid receptor agonists are effective analgesic agents. Central activation of the mu and/or kappa opioid receptors (KOR) is associated with CNS side effects, which limits their effectiveness. Recent studies indicated that peripherally restricted, selective KOR agonists were potent analgesics and devoid of CNS-related side effects. To confirm this hypothesis, we designed a novel, potent, and peripherally restricted KOR-selective agonist, ZYKR1. The analgesic efficacy, brain penetration and safety of ZYKR1 were assessed in pre-clinical models. ZYKR1 showed KOR agonistic activity in the cAMP assay, with an EC50 of 0.061 nM and more than 105-fold selectivity over the mu and delta opioid receptors (EC50 > 10 µM). ZYKR1 was not found to bind mu, delta opioid, and NOP receptors in radioligand binding assays. ZYKR1 produced concentration-dependent inhibition of electrically evoked contractions in isolated mouse vas deferens with an IC50 of 1.6 nM ZYKR1 showed peripheral restriction and potent analgesic efficacy in various in-vivo animal models (acetic acid induced visceral pain mouse model, ED50: 0.025 mg/kg, IV; ovariohysterectomy induced postoperative pain rat model, ED50: 0.023 mg/kg, IV; and C48/80 induced pruritus mouse model, ED50: 0.063 mg/kg, IV). In addition, ZYKR1 was devoid of motor coordination, physical dependence, dysphoria, and respiratory depression at 30, 400, 10 and 10-fold of efficacy dose, respectively. In conclusion, ZYKR1 has potent antinociceptive action in visceral pain and pruritus with limited CNS side effects in preclinical models owing to its peripheral restriction.


Assuntos
Receptores Opioides kappa , Dor Visceral , Animais , Masculino , Camundongos , Ratos , Analgésicos/farmacologia , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Modelos Animais , Prurido , Receptores Opioides kappa/agonistas , Receptores Opioides mu/metabolismo , Dor Visceral/tratamento farmacológico
17.
Mol Neurobiol ; 59(2): 890-915, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34797522

RESUMO

Coincident excitation via different sensory modalities encoding objects of positive salience is known to facilitate learning and memory. With a view to dissect the contribution of visual cues in inducing adaptive neural changes, we monitored the lever press activity of a rat conditioned to self-administer sweet food pellets in the presence/absence of light cues. Application of light cues facilitated learning and consolidation of long-term memory. The superior colliculus (SC) of rats trained on light cue showed increased neuronal activity, dendritic branching, and brain-derived neurotrophic factor (BDNF) protein and mRNA expression. Concomitantly, the hippocampus showed augmented neurogenesis as well as BDNF protein and mRNA expression. While intra-SC administration of U0126 (inhibitor of ERK 1/2 and long-term memory) impaired memory formation, lidocaine (local anaesthetic) hindered memory recall. The light cue-dependent sweet food pellet self-administration was coupled with increased efflux of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the nucleus accumbens shell (AcbSh). In conditioned rats, pharmacological inhibition of glutamatergic signalling in dentate gyrus (DG) reduced lever press activity, as well as DA and DOPAC secretion in the AcbSh. We suggest that the neuroplastic changes in the SC and hippocampus might represent memory engrams sculpted by visual cues encoding reward information.


Assuntos
Sinais (Psicologia) , Colículos Superiores , Animais , Hipocampo/metabolismo , Núcleo Accumbens/metabolismo , Ratos , Recompensa
18.
Mol Neurobiol ; 58(3): 1162-1184, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33099744

RESUMO

The recurrent events of mild trauma exacerbate the vulnerability for post-traumatic stress disorder; however, the underlying molecular mechanisms are scarcely known. The repeated mild traumatic brain injury (rMTBI) perturbs redox homeostasis which is primarily managed by superoxide dismutase 2 (SOD2). The current study investigates the role of DNA methylation in SOD2 gene regulation and its involvement in rMTBI-induced persistent neuropathology inflicted by weight drop injury paradigm. The oxidative damage, neurodegenerative indicators, and SOD2 function and its regulation in the hippocampus were analyzed after 48 h and 30 days of rMTBI. The temporal and episodic increase in ROS levels (oxidative stress) heightened 8-hydroxyguanosine levels indicating oxidative damage after rMTBI that was concomitant with decline in SOD2 function. In parallel, occupancy of DNMT3b at SOD2 promoter was higher post 30 days of the first episode of rMTBI causing hypermethylation at SOD2 promoter. This epigenetic silencing of SOD2 promoter was sustained after the second episode of rMTBI causing permanent blockade in SOD2 response. The resultant oxidative stress further culminated into the increasing number of degenerating neurons. The treatment with 5-azacytidine, a pan DNMT inhibitor, normalized DNA methylation levels and revived SOD2 function after the second episode of rMTBI. The release of blockade in SOD2 expression by DNMT inhibition also normalized the post-traumatic oxidative consequences and relieved the neurodegeneration and deficits in learning and memory as measured by novel object recognition test. In conclusion, DNMT3b-mediated DNA methylation plays a critical role in SOD2 gene regulation in the hippocampus, and the perturbations therein post rMTBI are detrimental to redox homeostasis manifesting into neurological consequences.


Assuntos
Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/patologia , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Epigênese Genética , Hipocampo/enzimologia , Estresse Oxidativo/genética , Superóxido Dismutase/metabolismo , Animais , Azacitidina/farmacologia , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Regulação para Baixo , Inativação Gênica , Masculino , Modelos Biológicos , Degeneração Neural/complicações , Degeneração Neural/patologia , Células PC12 , Regiões Promotoras Genéticas/genética , Ratos , Ratos Wistar , DNA Metiltransferase 3B
19.
Prog Neurobiol ; 202: 102048, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33798614

RESUMO

Reward induces activity-dependant gene expression and synaptic plasticity-related changes. Lysine-specific histone demethylase 1 (LSD1), a key enzyme driving histone modifications, regulates transcription in neural circuits of memory and emotional behavior. Herein, we focus on the role of LSD1 in modulating the expression of brain derived neurotrophic factor (BDNF), the master regulator of synaptic plasticity, in the lateral hypothalamus-medial forebrain bundle (LH-MFB) circuit during positive reinforcement. Rats, trained for intracranial self-stimulation (ICSS) via an electrode-cannula assembly in the LH-MFB area, were assayed for lever press activity, epigenetic parameters and dendritic sprouting. LSD1 expression and markers of synaptic plasticity like BDNF and dendritic arborization in the LH, showed distinct increase in conditioned animals. H3K4me2 levels at Bdnf IV and Bdnf IX promoters were increased in ICSS-conditioned rats, but H3K9me2 was decreased. While intra LH-MFB treatment with pan Lsd1 siRNA inhibited lever press activity, analyses of LH tissue showed reduction in BDNF expression and levels of H3K4me2 and H3K9me2. However, co-administration of BDNF peptide restored lever press activity mitigated by Lsd1 siRNA. BDNF expression in LH, driven by LSD1 via histone demethylation, may play an important role in reshaping the reward pathway and hold the key to decode the molecular basis of addiction.


Assuntos
Região Hipotalâmica Lateral , Feixe Prosencefálico Mediano , Animais , Fator Neurotrófico Derivado do Encéfalo , Histona Desmetilases , RNA Interferente Pequeno , Ratos , Ratos Wistar , Recompensa
20.
Neuroscience ; 424: 121-132, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31706959

RESUMO

Thermosensitive transient receptor potential vanilloid (TRPV) channels are widely expressed in the brain and known to profoundly influence Ca2+-signaling, neurotransmitter release and behavior. While these channels are expressed in the cerebellum, neuronal firing and hyperactivity/reflexes seem associated with cerebellar temperature modulation. However, the distribution and functional significance of TRPV-equipped elements in the cerebellum has remained unexplored. Among TRPV sub-family, TRPV3 is regulated by temperature within physiological range and its transcript highly expressed in the brain. The study aims at exploring the relevance of TRPV3 in the cerebellum of developing and adult rat. RT-PCR analysis showed expression of N- and C-terminal fragments of TRPV3 mRNA in the adult rat cerebellum. Using double immunofluorescence, TRPV3-immunoreactivity was observed in Calbindin D28K-labeled Purkinje neurons. The sections of cerebellum from the postnatal rats (P4, P8, P16 and P42) were processed for TRPV3-immunofluorescence. Compared to P4 and P8, the percent fluorescent area of TRPV3-immunoreactivity significantly increased in the cerebellum of P16 and P42 rats. With a view to test the significance of TRPV3 in cerebellar function, TRPV3-agonist (eugenol) or -inhibitors [ruthenium red or isopentenyl pyrophosphate (IPP)] were administered stereotaxically intra-cerebellum and motor responses analyzed. Compared to controls, rats injected with TRPV3 inhibitor significantly reduced the stride length (P < 0.001), locomotor activity (P < 0.001), and rotarod retention time (P < 0.001), but increased footprints length (P < 0.01) and escape latency (P < 0001). TRPV3-agonist treatment, however, had no effect on these behaviors. We suggest that TRPV3 in Purkinje neurons may serve as novel molecular component for Ca2+-signaling and motor coordination function of the cerebellum.


Assuntos
Cerebelo/fisiologia , Locomoção/fisiologia , Destreza Motora/fisiologia , Desempenho Psicomotor/fisiologia , Canais de Cátion TRPV/fisiologia , Animais , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Eugenol/administração & dosagem , Locomoção/efeitos dos fármacos , Masculino , Destreza Motora/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/fisiologia , Ratos , Ratos Wistar , Rutênio Vermelho/administração & dosagem , Técnicas Estereotáxicas , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA