Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Cancer Res ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39047169

RESUMO

PURPOSE: To design a pan-cancer gene panel for childhood malignancies and validate it using clinically characterized patient samples. EXPERIMENTAL DESIGN: In addition to 5,275 coding exons, SJPedPanel also covers 297 introns for fusions/structural variations and 7,590 polymorphic sites for copy number alterations. Capture uniformity and limit of detection are determined by targeted sequencing of cell lines using dilution experiment. We validate its coverage by in silico analysis of an established real-time clinical genomics (RTCG) cohort of 253 patients. We further validate its performance by targeted re-sequencing of 113 patient samples from the RTCG cohort. We demonstrate its power in analyzing low tumor burden specimens using morphologic remission and monitoring samples. RESULTS: Among the 485 pathogenic variants reported in RTCG cohort, SJPedPanel covered 86% of variants, including 82% of 90 rearrangements responsible for fusion oncoproteins. In our targeted re-sequencing cohort, 91% of 389 pathogenic variants are detected. The gene panel enabled us to detect ~95% of variants at allele fraction 0.5%, while the detection rate is ~80% at allele fraction 0.2%. The panel detected low frequency driver alterations from morphologic leukemia remission samples and relapse-enriched alterations from monitoring samples, demonstrating its power for cancer monitoring and early detection. CONCLUSIONS: SJPedPanel enables the cost-effective detection of clinically relevant genetic alterations including rearrangements responsible for subtype-defining fusions by targeted sequencing of ~0.15% of human genome for childhood malignancies. It will enhance the analysis of specimens with low tumor burdens for cancer monitoring and early detection.

2.
Nat Commun ; 15(1): 6524, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107278

RESUMO

Sequence-based genetic testing identifies causative variants in ~ 50% of individuals with developmental and epileptic encephalopathies (DEEs). Aberrant changes in DNA methylation are implicated in various neurodevelopmental disorders but remain unstudied in DEEs. We interrogate the diagnostic utility of genome-wide DNA methylation array analysis on peripheral blood samples from 582 individuals with genetically unsolved DEEs. We identify rare differentially methylated regions (DMRs) and explanatory episignatures to uncover causative and candidate genetic etiologies in 12 individuals. Using long-read sequencing, we identify DNA variants underlying rare DMRs, including one balanced translocation, three CG-rich repeat expansions, and four copy number variants. We also identify pathogenic variants associated with episignatures. Finally, we refine the CHD2 episignature using an 850 K methylation array and bisulfite sequencing to investigate potential insights into CHD2 pathophysiology. Our study demonstrates the diagnostic yield of genome-wide DNA methylation analysis to identify causal and candidate variants as 2% (12/582) for unsolved DEE cases.


Assuntos
Variações do Número de Cópias de DNA , Metilação de DNA , Epilepsia , Humanos , Metilação de DNA/genética , Feminino , Criança , Masculino , Epilepsia/genética , Epilepsia/diagnóstico , Variações do Número de Cópias de DNA/genética , Pré-Escolar , Proteínas de Ligação a DNA/genética , Adolescente , Testes Genéticos/métodos , Lactente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA