Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 278(Pt 1): 134392, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39098675

RESUMO

Leishmania donovani relies on specific vitamins and cofactors crucial for its survival and pathogenesis. Tailoring therapies to disrupt these pathways offers a promising strategy for the treatment of Visceral Leishmaniasis. Current treatment regimens are limited due to drug resistance and high costs. The dependency of Leishmania parasites on Vitamin B2 and its metabolic products is not known. In this study, we have biochemically and biophysically characterized a Vitamin B2 metabolism enzyme, riboflavin kinase from L. donovani (LdRFK) which converts riboflavin (vitamin B2) into flavin mononucleotide (FMN). Sequence comparison with human counterpart reflects 31.58 % identity only, thus opening up the possibility of exploring it as drug target. The rfk gene was cloned, expressed and the recombinant protein was purified. Kinetic parameters of LdRFK were evaluated with riboflavin and ATP as substrates which showed differential binding affinity when compared with the human RFK enzyme. Thermal and denaturant stability of the enzyme was evaluated. The rfk gene was overexpressed in the parasites and its role in growth and cell cycle was evaluated. In the absence of crystal structure, homology modelling and molecular dynamic simulation studies were performed to predict LdRFK structure. The data shows differences in substrate binding between human and parasite enzyme. This raises the possibility of exploring LdRFK for specific designing of antileishmanial molecules. Gene disruption studies can further validate its candidature as antileishmanial target.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA