RESUMO
Evidence has increasingly shown that the lungs are a major site of immune regulation. A robust and highly regulated immune response in the lung protects the host from pathogen infection, whereas an inefficient or deleterious response can lead to various pulmonary diseases. Many cell types, such as epithelial cells, dendritic cells, macrophages, neutrophils, eosinophils, and B and T lymphocytes, contribute to lung immunity. This review focuses on the recent advances in understanding how T lymphocytes mediate pulmonary host defenses against bacterial, viral, and fungal pathogens.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Pulmão/imunologia , Pulmão/patologia , Tuberculose Pulmonar/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Pulmão/microbiologia , Linfonodos/imunologia , Linfonodos/microbiologia , Linfonodos/patologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologiaRESUMO
Regulatory T cells (Tregs) are a barrier to anti-tumor immunity. Neuropilin-1 (Nrp1) is required to maintain intratumoral Treg stability and function but is dispensable for peripheral immune tolerance. Treg-restricted Nrp1 deletion results in profound tumor resistance due to Treg functional fragility. Thus, identifying the basis for Nrp1 dependency and the key drivers of Treg fragility could help to improve immunotherapy for human cancer. We show that a high percentage of intratumoral NRP1+ Tregs correlates with poor prognosis in melanoma and head and neck squamous cell carcinoma. Using a mouse model of melanoma where Nrp1-deficient (Nrp1-/-) and wild-type (Nrp1+/+) Tregs can be assessed in a competitive environment, we find that a high proportion of intratumoral Nrp1-/- Tregs produce interferon-γ (IFNγ), which drives the fragility of surrounding wild-type Tregs, boosts anti-tumor immunity, and facilitates tumor clearance. We also show that IFNγ-induced Treg fragility is required for response to anti-PD1, suggesting that cancer therapies promoting Treg fragility may be efficacious.
Assuntos
Carcinoma de Células Escamosas/imunologia , Neoplasias de Cabeça e Pescoço/imunologia , Interferon gama/imunologia , Melanoma/imunologia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Fatores de Transcrição Forkhead , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neuropilina-1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Microambiente Tumoral , Receptor de Interferon gamaRESUMO
The Th17 cell-lineage-defining cytokine IL-17A contributes to host defense and inflammatory disease by coordinating multicellular immune responses. The IL-17 receptor (IL-17RA) is expressed by diverse intestinal cell types, and therapies targeting IL-17A induce adverse intestinal events, suggesting additional tissue-specific functions. Here, we used multiple conditional deletion models to identify a role for IL-17A in secretory epithelial cell differentiation in the gut. Paneth, tuft, goblet, and enteroendocrine cell numbers were dependent on IL-17A-mediated induction of the transcription factor ATOH1 in Lgr5+ intestinal epithelial stem cells. Although dispensable at steady state, IL-17RA signaling in ATOH1+ cells was required to regenerate secretory cells following injury. Finally, IL-17A stimulation of human-derived intestinal organoids that were locked into a cystic immature state induced ATOH1 expression and rescued secretory cell differentiation. Our data suggest that the cross talk between immune cells and stem cells regulates secretory cell lineage commitment and the integrity of the mucosa.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Mucosa Intestinal/citologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Interleucina-17/metabolismo , Células-Tronco/metabolismo , Animais , Comunicação Celular , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Humanos , Interleucina-17/metabolismo , Interleucina-17/farmacologia , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/metabolismo , Intestinos/patologia , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Receptores de Interleucina-17/deficiência , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais , Células-Tronco/citologiaAssuntos
Receptores de Calcitriol/metabolismo , SARS-CoV-2/imunologia , Células Th1/imunologia , Vitamina D/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , COVID-19/patologia , Humanos , Interferon gama/imunologia , Interleucina-10/imunologia , Proteína Cofatora de Membrana/imunologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Receptores de Calcitriol/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/imunologiaRESUMO
Ivacaftor is a potentiator of the cystic fibrosis transmembrane conductance regulator (CFTR) that reduces Pseudomonas aeruginosa culture positivity in CF patients with unclear mechanisms. Riquelme et al. (2017) propose that improved CFTR trafficking could enhance P. aeruginosa clearance through activating the tumor suppressor PTEN.
Assuntos
Anti-Infecciosos , Fibrose Cística , Aminofenóis , Antibacterianos , Regulador de Condutância Transmembrana em Fibrose Cística , Humanos , PTEN Fosfo-Hidrolase , Pseudomonas aeruginosaRESUMO
Respiratory tract virus infections cause millions of hospitalizations worldwide each year. Severe infections lead to lung damage that coincides with persistent inflammation and a lengthy repair period. Vaccination and antiviral therapy help to mitigate severe infections before or during the acute stage of disease, but there are currently limited specific treatment options available to individuals experiencing the long-term sequelae of respiratory viral infection. Herein, C57BL/6 mice were infected with influenza A/PR/8/34 as a model for severe viral lung infection and allowed to recover for 21 days. Mice were treated with rapamycin, a well-characterized mammalian target of rapamycin complex 1 (mTORC1) inhibitor, on days 12 to 20 after infection, a time period after viral clearance. Persistent inflammation following severe influenza infection in mice was primarily driven by macrophages and T cells. Uniform manifold approximation and projection analysis of flow cytometry data revealed that lung macrophages had high activation of mTORC1, an energy-sensing kinase involved in inflammatory immune cell effector functions. Rapamycin treatment reduced lung inflammation and the frequency of exudate macrophages, T cells, and B cells in the lung, while not impacting epithelial progenitor cells or adaptive immune memory. These data highlight mTORC1's role in sustaining persistent inflammation following clearance of a viral respiratory pathogen and suggest a possible intervention for post-viral chronic lung inflammation.
Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Pneumonia , Camundongos , Animais , Humanos , Infecções por Orthomyxoviridae/complicações , Camundongos Endogâmicos C57BL , Pulmão , Macrófagos , Inflamação/complicações , Sirolimo/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Serina-Treonina Quinases TOR , MamíferosRESUMO
With diminishing grant support for traditional funding in immunology, can the small-business program leverage a research program? The small-business grants programs offered by the US National Institutes of Health and other organizations support high-risk, early-stage technology commercialization at small businesses.
Assuntos
Financiamento Governamental , Programas Governamentais , Invenções , Apoio à Pesquisa como Assunto , Empresa de Pequeno Porte , Programas Governamentais/legislação & jurisprudência , Humanos , Invenções/economia , Invenções/legislação & jurisprudência , National Institutes of Health (U.S.) , Parcerias Público-Privadas , Pesquisa , Empresa de Pequeno Porte/economia , Empresa de Pequeno Porte/legislação & jurisprudência , Estados UnidosRESUMO
Interleukin-17 (IL-17) and IL-17 receptor (IL-17R) signaling are essential for regulating mucosal host defense against many invading pathogens. Commensal bacteria, especially segmented filamentous bacteria (SFB), are a crucial factor that drives T helper 17 (Th17) cell development in the gastrointestinal tract. In this study, we demonstrate that Th17 cells controlled SFB burden. Disruption of IL-17R signaling in the enteric epithelium resulted in SFB dysbiosis due to reduced expression of α-defensins, Pigr, and Nox1. When subjected to experimental autoimmune encephalomyelitis, IL-17R-signaling-deficient mice demonstrated earlier disease onset and worsened severity that was associated with increased intestinal Csf2 expression and elevated systemic GM-CSF cytokine concentrations. Conditional deletion of IL-17R in the enteric epithelium demonstrated that there was a reciprocal relationship between the gut microbiota and enteric IL-17R signaling that controlled dysbiosis, constrained Th17 cell development, and regulated the susceptibility to autoimmune inflammation.
Assuntos
Encefalomielite Autoimune Experimental/imunologia , Infecções por Bactérias Gram-Positivas/imunologia , Bactérias Gram-Positivas Formadoras de Endosporo/imunologia , Intestinos/fisiologia , Receptores de Interleucina-17/metabolismo , Células Th17/imunologia , Animais , Disbiose/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/sangue , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interações Hospedeiro-Patógeno , Imunidade nas Mucosas/genética , Interleucina-17/metabolismo , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 1 , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores de Interleucina-17/genética , Transdução de Sinais/genética , Células Th17/microbiologia , alfa-Defensinas/genética , alfa-Defensinas/metabolismoRESUMO
SARS-CoV-2 has caused an estimated 7 million deaths worldwide to date. A secreted SARS-CoV-2 accessory protein, known as open reading frame 8 (ORF8), elicits inflammatory pulmonary cytokine responses and is associated with disease severity in COVID-19 patients. Recent reports proposed that ORF8 mediates downstream signals in macrophages and monocytes through the IL-17 receptor complex (IL-17RA, IL-17RC). However, generally IL-17 signals are found to be restricted to the nonhematopoietic compartment, thought to be due to rate-limiting expression of IL-17RC. Accordingly, we revisited the capacity of IL-17 and ORF8 to induce cytokine gene expression in mouse and human macrophages and monocytes. In SARS-CoV-2-infected human and mouse lungs, IL17RC mRNA was undetectable in monocyte/macrophage populations. In cultured mouse and human monocytes and macrophages, ORF8 but not IL-17 led to elevated expression of target cytokines. ORF8-induced signaling was fully preserved in the presence of anti-IL-17RA/RC neutralizing Abs and in Il17ra-/- cells. ORF8 signaling was also operative in Il1r1-/- bone marrow-derived macrophages. However, the TLR/IL-1R family adaptor MyD88, which is dispensable for IL-17R signaling, was required for ORF8 activity yet MyD88 is not required for IL-17 signaling. Thus, we conclude that ORF8 transduces inflammatory signaling in monocytes and macrophages via MyD88 independently of the IL-17R.
Assuntos
COVID-19 , Fases de Leitura Aberta , SARS-CoV-2 , Animais , Humanos , Camundongos , COVID-19/imunologia , COVID-19/virologia , Citocinas/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , SARS-CoV-2/metabolismoRESUMO
Tuberculosis is the leading cause of death by an infectious disease worldwide1. However, the involvement of innate lymphoid cells (ILCs) in immune responses to infection with Mycobacterium tuberculosis (Mtb) is unknown. Here we show that circulating subsets of ILCs are depleted from the blood of participants with pulmonary tuberculosis and restored upon treatment. Tuberculosis increased accumulation of ILC subsets in the human lung, coinciding with a robust transcriptional response to infection, including a role in orchestrating the recruitment of immune subsets. Using mouse models, we show that group 3 ILCs (ILC3s) accumulated rapidly in Mtb-infected lungs and coincided with the accumulation of alveolar macrophages. Notably, mice that lacked ILC3s exhibited a reduction in the accumulation of early alveolar macrophages and decreased Mtb control. We show that the C-X-C motif chemokine receptor 5 (CXCR5)-C-X-C motif chemokine ligand 13 (CXCL13) axis is involved in Mtb control, as infection upregulates CXCR5 on circulating ILC3s and increases plasma levels of its ligand, CXCL13, in humans. Moreover, interleukin-23-dependent expansion of ILC3s in mice and production of interleukin-17 and interleukin-22 were found to be critical inducers of lung CXCL13, early innate immunity and the formation of protective lymphoid follicles within granulomas. Thus, we demonstrate an early protective role for ILC3s in immunity to Mtb infection.
Assuntos
Imunidade Inata/imunologia , Linfócitos/classificação , Linfócitos/imunologia , Macrófagos Alveolares/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Animais , Quimiocina CXCL13/imunologia , Feminino , Granuloma/imunologia , Granuloma/patologia , Humanos , Interleucina-17/imunologia , Interleucinas/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Linfócitos/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Receptores CXCR5/imunologia , Transcriptoma/genética , Tuberculose Pulmonar/genética , Interleucina 22RESUMO
An Amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Emerging evidence indicates that activation of complement system leading to the formation of the membrane attack complex (MAC) plays a detrimental role in COVID-19. However, their pathogenic roles have never been experimentally investigated before. We used three knock out mice strains (1. C3-/-; 2. C7-/-; and 3. Cd59ab-/-) to evaluate the role of complement in severe COVID-19 pathogenesis. C3 deficient mice lack a key common component of all three complement activation pathways and are unable to generate C3 and C5 convertases. C7 deficient mice lack a complement protein needed for MAC formation. Cd59ab deficient mice lack an important inhibitor of MAC formation. We also used anti-C5 antibody to block and evaluate the therapeutic potential of inhibiting MAC formation. We demonstrate that inhibition of complement activation (in C3-/-) and MAC formation (in C3-/-. C7-/-, and anti-C5 antibody) attenuates severe COVID-19; whereas enhancement of MAC formation (Cd59ab-/-) accelerates severe COVID-19. The degree of MAC but not C3 deposits in the lungs of C3-/-, C7-/- mice, and Cd59ab-/- mice as compared to their control mice is associated with the attenuation or acceleration of SARS-CoV-2-induced disease. Further, the lack of terminal complement activation for the formation of MAC in C7 deficient mice protects endothelial dysfunction, which is associated with the attenuation of diseases and pathologic changes. Our results demonstrated the causative effect of MAC in severe COVID-19 and indicate a potential avenue for modulating the complement system and MAC formation in the treatment of severe COVID-19.
Assuntos
Antígenos CD59 , COVID-19 , Ativação do Complemento , Complexo de Ataque à Membrana do Sistema Complemento , Camundongos Knockout , SARS-CoV-2 , Animais , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Ativação do Complemento/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Camundongos , SARS-CoV-2/imunologia , Antígenos CD59/metabolismo , Antígenos CD59/genética , Antígenos CD59/imunologia , Complemento C3/imunologia , Complemento C3/metabolismo , Complemento C3/genética , Camundongos Endogâmicos C57BL , Humanos , Complemento C5/imunologia , Complemento C5/metabolismo , Complemento C5/antagonistas & inibidores , Modelos Animais de DoençasRESUMO
The calcium-sensing receptor (CaSR), a G protein-coupled receptor, regulates Ca2+ concentration in plasma by regulating parathyroid hormone secretion. In other tissues, it is reported to play roles in cellular differentiation and migration and in secretion and absorption. We reported previously that CaSR can be conditionally deleted in the mouse esophagus. This conditional knockout (KO) (EsoCaSR-/-) model showed a significant reduction in the levels of adherens and tight junction proteins and had a marked buildup of bacteria on the luminal esophageal surface. To further examine the role of CaSR, we used RNA sequencing to determine gene expression profiles in esophageal epithelia of control and EsoCaSR-/-mice RNA Seq data indicated upregulation of gene sets involved in DNA replication and cell cycle in EsoCaSR-/-. This is accompanied by the downregulation of gene sets involved in the innate immune response and protein homeostasis including peptide elongation and protein trafficking. Ingenuity pathway analysis (IPA) demonstrated that these genes are mapped to important biological networks including calcium and Ras homologus A (RhoA) signaling pathways. To further explore the bacterial buildup in EsoCaSR-/- esophageal tissue, 16S sequencing of the mucosal-associated bacterial microbiome was performed. Three bacterial species, g_Rodentibacter, s_Rodentibacter_unclassified, and s_Lactobacillus_hilgardi were significantly increased in EsoCaSR-/-. Furthermore, metagenomic analysis of 16S sequences indicated that pathways related to oxidative phosphorylation and metabolism were downregulated in EsoCaSR-/- tissues. These data demonstrate that CaSR impacts major pathways of cell proliferation, differentiation, cell cycle, and innate immune response in esophageal epithelium. The disruption of these pathways causes inflammation and significant modifications of the microbiome.NEW & NOTEWORTHY Calcium-sensing receptor (CaSR) plays a significant role in maintaining the barrier function of esophageal epithelium. Using RNA sequencing, we show that conditional deletion of CaSR from mouse esophagus causes upregulation of genes involved in DNA replication and cell cycle and downregulation of genes involved in the innate immune response, protein translation, and cellular protein synthesis. Pathway analysis shows disruption of signaling pathways of calcium and actin cytoskeleton. These changes caused inflammation and esophageal dysbiosis.
Assuntos
Cálcio , Microbiota , Animais , Camundongos , Cálcio/metabolismo , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Esôfago/metabolismo , Inflamação , Expressão GênicaRESUMO
Risk factors contributing to dementia are multifactorial. Accumulating evidence suggests a role for pathogens as risk factors, but data is largely correlative with few causal relationships. Here, we demonstrate that intermittent murine cytomegalovirus (MCMV) infection of mice, alters blood brain barrier (BBB) permeability and metabolic pathways. Increased basal mitochondrial function is observed in brain microvessels cells (BMV) exposed to intermittent MCMV infection and is accompanied by elevated levels of superoxide. Further, mice score lower in cognitive assays compared to age-matched controls who were never administered MCMV. Our data show that repeated systemic infection with MCMV, increases markers of neuroinflammation, alters mitochondrial function, increases markers of oxidative stress and impacts cognition. Together, this suggests that viral burden may be a risk factor for dementia. These observations provide possible mechanistic insights through which pathogens may contribute to the progression or exacerbation of dementia.
Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Infecções por Citomegalovirus , Demência , Animais , Camundongos , Infecções por Citomegalovirus/complicações , CogniçãoRESUMO
Interleukin-17 (IL-17) induces pathology in autoimmunity and infections; therefore, constraint of this pathway is an essential component of its regulation. We demonstrate that the signaling intermediate MCPIP1 (also termed Regnase-1, encoded by Zc3h12a) is a feedback inhibitor of IL-17 receptor signal transduction. MCPIP1 knockdown enhanced IL-17-mediated signaling, requiring MCPIP1's endoribonuclease but not deubiquitinase domain. MCPIP1 haploinsufficient mice showed enhanced resistance to disseminated Candida albicans infection, which was reversed in an Il17ra(-/-) background. Conversely, IL-17-dependent pathology in Zc3h12a(+/-) mice was exacerbated in both EAE and pulmonary inflammation. MCPIP1 degraded Il6 mRNA directly but only modestly downregulated the IL-6 promoter. However, MCPIP1 strongly inhibited the Lcn2 promoter by regulating the mRNA stability of Nfkbiz, encoding the IκBζ transcription factor. Unexpectedly, MCPIP1 degraded Il17ra and Il17rc mRNA, independently of the 3' UTR. The cumulative impact of MCPIP1 on IL-6, IκBζ, and possibly IL-17R subunits results in a biologically relevant inhibition of IL-17 signaling.
Assuntos
Inflamação/imunologia , Interleucina-17/imunologia , Ribonucleases/imunologia , Transdução de Sinais/imunologia , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/imunologia , Proteínas de Fase Aguda/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Candida albicans/imunologia , Candida albicans/fisiologia , Candidíase/genética , Candidíase/imunologia , Candidíase/microbiologia , Linhagem Celular , Células Cultivadas , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Immunoblotting , Inflamação/genética , Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-6/metabolismo , Lipocalina-2 , Lipocalinas/genética , Lipocalinas/imunologia , Lipocalinas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/imunologia , Proteínas Oncogênicas/metabolismo , Pneumonia/genética , Pneumonia/imunologia , Pneumonia/metabolismo , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/imunologia , Receptores de Interleucina-17/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleases/genética , Ribonucleases/metabolismoRESUMO
Antigen conformation shapes CD4+ T-cell specificity through mechanisms of antigen processing, and the consequences for immunity may rival those from conformational effects on antibody specificity. CD4+ T cells initiate and control immunity to pathogens and cancer and are at least partly responsible for immunopathology associated with infection, autoimmunity, and allergy. The primary trigger for CD4+ T-cell maturation is the presentation of an epitope peptide in the MHC class II antigen-presenting protein (MHCII), most commonly on an activated dendritic cell, and then the T-cell responses are recalled by subsequent presentations of the epitope peptide by the same or other antigen-presenting cells. Peptide presentation depends on the proteolytic fragmentation of the antigen in an endosomal/lysosomal compartment and concomitant loading of the fragments into the MHCII, a multistep mechanism called antigen processing and presentation. Although the role of peptide affinity for MHCII has been well studied, the role of proteolytic fragmentation has received less attention. In this Perspective, we will briefly summarize evidence that antigen resistance to unfolding and proteolytic fragmentation shapes the specificity of the CD4+ T-cell response to selected viral envelope proteins, identify several remarkable examples in which the immunodominant CD4+ epitopes most likely depend on the interaction of processing machinery with antigen conformation, and outline how knowledge of antigen conformation can inform future efforts to design vaccines.
Assuntos
Linfócitos T CD4-Positivos , Epitopos de Linfócito T , Linfócitos T CD4-Positivos/metabolismo , Epitopos de Linfócito T/química , Epitopos de Linfócito T/metabolismo , Proteínas Virais de Fusão/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Apresentação de Antígeno , Epitopos Imunodominantes/química , Epitopos Imunodominantes/metabolismoRESUMO
Ectopic or tertiary lymphoid tissues, such as inducible bronchus-associated lymphoid tissue (iBALT), form in nonlymphoid organs after local infection or inflammation. However, the initial events that promote this process remain unknown. Here we show that iBALT formed in mouse lungs as a consequence of pulmonary inflammation during the neonatal period. Although we found CD4(+)CD3(-) lymphoid tissue-inducer cells (LTi cells) in neonatal lungs, particularly after inflammation, iBALT was formed in mice that lacked LTi cells. Instead, we found that interleukin 17 (IL-17) produced by CD4(+) T cells was essential for the formation of iBALT. IL-17 acted by promoting lymphotoxin-α-independent expression of the chemokine CXCL13, which was important for follicle formation. Our results suggest that IL-17-producing T cells are critical for the development of ectopic lymphoid tissues.
Assuntos
Brônquios/imunologia , Tecido Linfoide/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Quimiocina CXCL13/biossíntese , Quimiocina CXCL13/imunologia , Interleucina-17/imunologia , Linfotoxina-alfa/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pneumonia/imunologia , Linfócitos T Auxiliares-Indutores/imunologiaRESUMO
There is an urgent need for new treatment options for carbapenem-resistant Klebsiella pneumoniae (K. pneumoniae), which is a common cause of life-threatening hospital- and community-acquired infections. Prophylactic or therapeutic vaccination may offer an approach to control these infections, however, none has yet been approved for human use. Here, we report the chemical synthesis of an outer core tetra- and pentasaccharide derived from the lipopolysaccharide of K. pneumoniae. The oligosaccharides were equipped with an aminopentyl linker, which facilitated conjugation to the carrier proteins CRM197 and BSA. Mice immunized with the glycoconjugate vaccine candidates elicited antibodies that recognized isolated LPS as well as various strains of K. pneumoniae. The successful preparation of the oligosaccharides relied on the selection of monosaccharide building blocks equipped with orthogonal hydroxyl and amino protecting groups. It allowed the differentiation of three types of amines of the target compounds and the installation of a crowded 4,5-branched Kdo moiety.
Assuntos
Lipopolissacarídeos , Pneumonia , Humanos , Animais , Camundongos , Klebsiella pneumoniae , Glicoconjugados , OligossacarídeosRESUMO
The highly complex and variable genotype-phenotype relationships observed in cystic fibrosis (CF) have been an area of growing interest since the discovery of the CF transmembrane conductance regulator (CFTR) gene >30 y ago. The consistently observed excessive, yet ineffective, activation of both the innate and adaptive host immune systems and the establishment of chronic infections within the lung, leading to destruction and functional decline, remain the primary causes of morbidity and mortality in CF. The fact that both inflammation and pathogenic bacteria persist despite the introduction of modulator therapies targeting the defective protein, CFTR, highlights that we still have much to discover regarding mucosal immunity determinants in CF. Gene modifier studies have overwhelmingly implicated immune genes in the pulmonary phenotype of the disease. In this context, we aim to review recent advances in our understanding of the innate and adaptive immune systems in CF lung disease.
Assuntos
Fibrose Cística , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Imunidade nas Mucosas , Inflamação , Pulmão/patologia , FenótipoRESUMO
Type 17 cytokines have been strongly implicated in mucosal immunity, in part by regulating the production of antimicrobial peptides. Using a mouse model of Citrobacter rodentium infection, which causes colitis, we found that intestinal IL-17RA and IL-17RC were partially required for control of infection in the colon and IL-17 regulates the production of luminal hydrogen peroxide as well as expression of Tnsf13 Reduced Tnfsf13 expression was associated with a profound defect in generating C. rodentium-specific IgA+ Ab-secreting cells. Taken together, intestinal IL-17R signaling plays key roles in controlling invading pathogens, in part by regulating luminal hydrogen peroxide as well as regulating the generation of pathogen-specific IgA+ Ab-secreting cells.