Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
PLoS Biol ; 20(8): e3001702, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35925899

RESUMO

Cycling of organic carbon in the ocean has the potential to mitigate or exacerbate global climate change, but major questions remain about the environmental controls on organic carbon flux in the coastal zone. Here, we used a field experiment distributed across 28° of latitude, and the entire range of 2 dominant kelp species in the northern hemisphere, to measure decomposition rates of kelp detritus on the seafloor in relation to local environmental factors. Detritus decomposition in both species were strongly related to ocean temperature and initial carbon content, with higher rates of biomass loss at lower latitudes with warmer temperatures. Our experiment showed slow overall decomposition and turnover of kelp detritus and modeling of coastal residence times at our study sites revealed that a significant portion of this production can remain intact long enough to reach deep marine sinks. The results suggest that decomposition of these kelp species could accelerate with ocean warming and that low-latitude kelp forests could experience the greatest increase in remineralization with a 9% to 42% reduced potential for transport to long-term ocean sinks under short-term (RCP4.5) and long-term (RCP8.5) warming scenarios. However, slow decomposition at high latitudes, where kelp abundance is predicted to expand, indicates potential for increasing kelp-carbon sinks in cooler (northern) regions. Our findings reveal an important latitudinal gradient in coastal ecosystem function that provides an improved capacity to predict the implications of ocean warming on carbon cycling. Broad-scale patterns in organic carbon decomposition revealed here can be used to identify hotspots of carbon sequestration potential and resolve relationships between carbon cycling processes and ocean climate at a global scale.


Assuntos
Kelp , Carbono , Sequestro de Carbono , Mudança Climática , Ecossistema
2.
J Phycol ; 60(3): 741-754, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38578201

RESUMO

Environmental changes associated with rapid climate change in the Arctic, such as the increased rates of sedimentation from climatic or anthropogenic sources, can enhance the impact of abiotic stressors on coastal ecosystems. High sedimentation rates can be detrimental to nearshore kelp abundance and distribution, possibly due to increased mortality at the spore settlement stage. Spore settlement and viability of the Arctic kelp Laminaria solidungula were examined through a series of lab-based sedimentation experiments. Spores were exposed to increasing sediment loads in three experimental designs simulating different sedimentation scenarios: sediment deposition above settled spores, settlement of spores on sediment-covered substrate, and simultaneous suspension of spores and sediments during settlement. Spore settlement was recorded upon completion of each experiment, and gametophyte abundance was assessed following a growth period with sediments removed to examine short-term spore viability via a gametophyte-to-settled-spore ratio. In all three types of sediment exposure, the addition of sediments caused a 30%-40% reduction in spore settlement relative to a no-sediment control. Spore settlement decreased significantly between the low and high sediment treatments when spores were settled onto sediment-covered substrates. In all experiments, increasing amounts of sediment had no significant effect on spore viability, indicating that spores that had settled under different short-term sediment conditions were viable. Our results indicate that depending on spore-sediment interaction type, higher rates of sedimentation resulting from increased sediment loading could affect L. solidungula spore settlement success with potential impacts on the long-term persistence of a diverse and productive benthic habitat.


Assuntos
Sedimentos Geológicos , Laminaria , Esporos , Laminaria/fisiologia , Esporos/fisiologia , Regiões Árticas , Kelp/fisiologia
3.
Glob Chang Biol ; 26(11): 6457-6473, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32902090

RESUMO

The changing global climate is having profound effects on coastal marine ecosystems around the world. Structure, functioning, and resilience, however, can vary geographically, depending on species composition, local oceanographic forcing, and other pressures from human activities and use. Understanding ecological responses to environmental change and predicting changes in the structure and functioning of whole ecosystems require large-scale, long-term studies, yet most studies trade spatial extent for temporal duration. We address this shortfall by integrating multiple long-term kelp forest monitoring datasets to evaluate biogeographic patterns and rates of change of key functional groups (FG) along the west coast of North America. Analysis of data from 469 sites spanning Alaska, USA, to Baja California, Mexico, and 373 species (assigned to 18 FG) reveals regional variation in responses to both long-term (2006-2016) change and a recent marine heatwave (2014-2016) associated with two atmospheric and oceanographic anomalies, the "Blob" and extreme El Niño Southern Oscillation (ENSO). Canopy-forming kelps appeared most sensitive to warming throughout their range. Other FGs varied in their responses among trophic levels, ecoregions, and in their sensitivity to heatwaves. Changes in community structure were most evident within the southern and northern California ecoregions, while communities in the center of the range were more resilient. We report a poleward shift in abundance of some key FGs. These results reveal major, ongoing region-wide changes in productive coastal marine ecosystems in response to large-scale climate variability, and the potential loss of foundation species. In particular, our results suggest that coastal communities that are dependent on kelp forests will be more impacted in the southern portion of the California Current region, highlighting the urgency of implementing adaptive strategies to sustain livelihoods and ensure food security. The results also highlight the value of multiregional integration and coordination of monitoring programs for improving our understanding of marine ecosystems, with the goal of informing policy and resource management in the future.


Assuntos
Kelp , Alaska , California , Ecossistema , Florestas , Humanos , México
4.
Proc Natl Acad Sci U S A ; 113(48): 13785-13790, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27849580

RESUMO

Kelp forests (Order Laminariales) form key biogenic habitats in coastal regions of temperate and Arctic seas worldwide, providing ecosystem services valued in the range of billions of dollars annually. Although local evidence suggests that kelp forests are increasingly threatened by a variety of stressors, no comprehensive global analysis of change in kelp abundances currently exists. Here, we build and analyze a global database of kelp time series spanning the past half-century to assess regional and global trends in kelp abundances. We detected a high degree of geographic variation in trends, with regional variability in the direction and magnitude of change far exceeding a small global average decline (instantaneous rate of change = -0.018 y-1). Our analysis identified declines in 38% of ecoregions for which there are data (-0.015 to -0.18 y-1), increases in 27% of ecoregions (0.015 to 0.11 y-1), and no detectable change in 35% of ecoregions. These spatially variable trajectories reflected regional differences in the drivers of change, uncertainty in some regions owing to poor spatial and temporal data coverage, and the dynamic nature of kelp populations. We conclude that although global drivers could be affecting kelp forests at multiple scales, local stressors and regional variation in the effects of these drivers dominate kelp dynamics, in contrast to many other marine and terrestrial foundation species.


Assuntos
Ecossistema , Florestas , Kelp/crescimento & desenvolvimento , Regiões Árticas , Mudança Climática , Oceanos e Mares
5.
Ecology ; 99(3): 761, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29281144

RESUMO

Size, growth, and density have been studied for North American Pacific coast sea urchins Strongylocentrotus purpuratus, S. droebachiensis, S. polyacanthus, Mesocentrotus (Strongylocentrotus) franciscanus, Lytechinus pictus, Centrostephanus coronatus, and Arbacia stellata by various workers at diverse sites and for varying lengths of time from 1956 to present. Numerous peer-reviewed publications have used some of these data but some data have appeared only in graduate theses or the gray literature. There also are data that have never appeared outside original data sheets. Motivation for studies has included fisheries management and environmental monitoring of sewer and power plant outfalls as well as changes associated with disease epidemics. Studies also have focused on kelp restoration, community effects of sea otters, basic sea urchin biology, and monitoring. The data sets presented here are a historical record of size, density, and growth for a common group of marine invertebrates in intertidal and nearshore environments that can be used to test hypotheses concerning future changes associated with fisheries practices, shifts of predator distributions, climate and ecosystem changes, and ocean acidification along the Pacific Coast of North America and islands of the north Pacific. No copyright restrictions apply. Please credit this paper when using the data.

6.
Oecologia ; 177(3): 645-655, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25416538

RESUMO

Sea otters (Enhydra lutris) inhabiting the Aleutian Islands have stabilized at low abundance levels following a decline and currently exhibit restricted habitat-utilization patterns. Possible explanations for restricted habitat use by sea otters can be classified into two fundamentally different processes, bottom-up and top-down forcing. Bottom-up hypotheses argue that changes in the availability or nutritional quality of prey resources have led to the selective use of habitats that support the highest quality prey. In contrast, top-down hypotheses argue that increases in predation pressure from killer whales have led to the selective use of habitats that provide the most effective refuge from killer whale predation. A third hypothesis suggests that current restricted habitat use is based on a need for protection from storms. We tested all three hypotheses for restricted habitat use by comparing currently used and historically used sea otter foraging locations for: (1) prey availability and quality, (2) structural habitat complexity, and (3) exposure to prevailing storms. Our findings suggest that current use is based on physical habitat complexity and not on prey availability, prey quality, or protection from storms, providing further evidence for killer whale predation as a cause for restricted sea otter habitat use in the Aleutian Islands.


Assuntos
Comportamento Animal , Ecossistema , Cadeia Alimentar , Valor Nutritivo , Lontras , Tempo (Meteorologia) , Alaska , Animais , Comportamento Predatório , Baleias
7.
Ecol Evol ; 14(3): e11118, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38455143

RESUMO

Species distribution models (SDMs) are used to map and predict the geographic distributions of animals based on environmental covariates. Typically, SDMs require high-resolution habitat data and time series information on animal locations. For data-limited regions, defined as having scarce habitat or animal survey data, modeling is more challenging, often failing to incorporate important environmental attributes. For example, for sea otters (Enhydra lutris), a federally protected keystone species with variable population trends across the species' range, predictive modeling of distributions has been successfully conducted in areas with robust sea otter population and habitat data. We used open-access data and employed a presence-only model, maximum entropy (MaxEnt), to investigate subtidal habitat associations (substrate and algal cover, bathymetry, and rugosity) of northern sea otters (E. lutris kenyoni) for a data-limited ecosystem, represented by Kachemak Bay, Alaska. Habitat association results corroborated previous findings regarding the importance of bathymetry and understory kelp as predictors of sea otter presence. Novel associations were detected as filamentous algae and shell litter were positively and negatively associated with northern sea otter presence, respectively, advancing existing knowledge of sea otter benthic habitat associations useful for predicting habitat suitability. This study provides a quantitative framework for conducting species distribution modeling with limited temporal and spatial animal distribution and abundance data. Utilizing drop camera information, our novel approach allowed for a better understanding of habitat requirements for a stable northern sea otter population, including bathymetry, understory kelp, and filamentous algae as positive predictors of sea otter presence in Kachemak Bay, Alaska.

8.
Mar Environ Res ; 187: 105970, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37004498

RESUMO

Seaweeds are foundation species across near-subtidal and intertidal zones, including when detached and free-floating and then cast ashore as wrack. Wrack is sometimes removed by humans for aesthetics or to be used as fertilizer. The study of wrack as an important habitat and resource for macroinvertebrates in high latitudes has been limited. To determine which taxa might be impacted when wrack is removed, the composition and relative abundance of macroinvertebrates were quantified monthly and compared in areas with and without wrack in Kachemak Bay, Alaska. Relationships were assessed between macroinvertebrates and wrack line (tidal height, moisture content, seaweed biomass) and beach characteristics (wave exposure, beach slope, substrate types). Approximately 47,000 animals were counted and a total of 87 taxa were identified from beach-cast wrack, drifting wrack, and bare sediment habitats. Macroinvertebrate communities within beach-cast wrack and bare sediment habitats were significantly different. Beach-cast wrack generally had more terrestrially-derived animals, especially Coleoptera and Diptera. Bare beach sediment was predominantly occupied by Enchytraeida (annelids). Macroinvertebrate communities were most strongly influenced by seaweed biomass and tidal height of the wrack line. Beach-cast wrack and bare sediments were also compared to drifting wrack in shallow, nearshore waters. Drifting wrack was different and generally occupied by more marine-derived animals, especially Amphipoda, Gastropoda, Mytilida, and Polychaeta. Ecological succession in decaying beach-cast wrack was documented, with decomposers (e.g., Amphipoda and Diptera) being early colonizers, and predators (e.g., Coleoptera and Hymenoptera) arriving later. Understanding the importance of this unique and ecologically important habitat to macroinvertebrates is essential, as removals and reductions in wrack availability could influence macroinvertebrate community structure, higher trophic level consumers, and key ecological processes on beaches. This study is the first direct investigation into seaweed wrack-associated macroinvertebrate communities in a sub-Arctic system.


Assuntos
Anfípodes , Alga Marinha , Animais , Humanos , Ecossistema , Biomassa
9.
Biol Bull ; 244(3): 143-163, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38457680

RESUMO

AbstractMass mortality events provide valuable insight into biological extremes and also ecological interactions more generally. The sea star wasting epidemic that began in 2013 catalyzed study of the microbiome, genetics, population dynamics, and community ecology of several high-profile species inhabiting the northeastern Pacific but exposed a dearth of information on the diversity, distributions, and impacts of sea star wasting for many lesser-known sea stars and a need for integration across scales. Here, we combine datasets from single-site to coast-wide studies, across time lines from weeks to decades, for 65 species. We evaluated the impacts of abiotic characteristics hypothetically associated with sea star wasting (sea surface temperature, pelagic primary productivity, upwelling wind forcing, wave exposure, freshwater runoff) and species characteristics (depth distribution, developmental mode, diet, habitat, reproductive period). We find that the 2010s sea star wasting outbreak clearly affected a little over a dozen species, primarily intertidal and shallow subtidal taxa, causing instantaneous wasting prevalence rates of 5%-80%. Despite the collapse of some populations within weeks, environmental and species variation protracted the outbreak, which lasted 2-3 years from onset until declining to chronic background rates of ∼2% sea star wasting prevalence. Recruitment began immediately in many species, and in general, sea star assemblages trended toward recovery; however, recovery was heterogeneous, and a marine heatwave in 2019 raised concerns of a second decline. The abiotic stressors most associated with the 2010s sea star wasting outbreak were elevated sea surface temperature and low wave exposure, as well as freshwater discharge in the north. However, detailed data speaking directly to the biological, ecological, and environmental cause(s) and consequences of the sea star wasting outbreak remain limited in scope, unavoidably retrospective, and perhaps always indeterminate. Redressing this shortfall for the future will require a broad spectrum of monitoring studies not less than the taxonomically broad cross-scale framework we have modeled in this synthesis.


Assuntos
Ecossistema , Estrelas-do-Mar , Animais , Estudos Retrospectivos , Dinâmica Populacional , Temperatura
10.
Biol Bull ; 243(1): 50-75, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36108034

RESUMO

AbstractSea star wasting-marked in a variety of sea star species as varying degrees of skin lesions followed by disintegration-recently caused one of the largest marine die-offs ever recorded on the west coast of North America, killing billions of sea stars. Despite the important ramifications this mortality had for coastal benthic ecosystems, such as increased abundance of prey, little is known about the causes of the disease or the mechanisms of its progression. Although there have been studies indicating a range of causal mechanisms, including viruses and environmental effects, the broad spatial and depth range of affected populations leaves many questions remaining about either infectious or non-infectious mechanisms. Wasting appears to start with degradation of mutable connective tissue in the body wall, leading to disintegration of the epidermis. Here, we briefly review basic sea star biology in the context of sea star wasting and present our current knowledge and hypotheses related to the symptoms, the microbiome, the viruses, and the associated environmental stressors. We also highlight throughout the article knowledge gaps and the data needed to better understand sea star wasting mechanistically, its causes, and potential management.


Assuntos
Ecossistema , Estrelas-do-Mar , Animais , Biologia
11.
Sci Rep ; 11(1): 20284, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645878

RESUMO

Killer whales (Orcinus orca) are top predators throughout the world's oceans. In the North Pacific, the species is divided into three ecotypes-resident (fish-eating), transient (mammal-eating), and offshore (largely shark-eating)-that are genetically and acoustically distinct and have unique roles in the marine ecosystem. In this study, we examined the year-round distribution of killer whales in the northern Gulf of Alaska from 2016 to 2020 using passive acoustic monitoring. We further described the daily acoustic residency patterns of three killer whale populations (southern Alaska residents, Gulf of Alaska transients, and AT1 transients) for one year of these data. Highest year-round acoustic presence occurred in Montague Strait, with strong seasonal patterns in Hinchinbrook Entrance and Resurrection Bay. Daily acoustic residency times for the southern Alaska residents paralleled seasonal distribution patterns. The majority of Gulf of Alaska transient detections occurred in Hinchinbrook Entrance in spring. The depleted AT1 transient killer whale population was most often identified in Montague Strait. Passive acoustic monitoring revealed that both resident and transient killer whales used these areas much more extensively than previously known and provided novel insights into high use locations and times for each population. These results may be driven by seasonal foraging opportunities and social factors and have management implications for this species.


Assuntos
Acústica , Ecolocação/fisiologia , Monitoramento Ambiental/métodos , Transdutores , Vocalização Animal/fisiologia , Orca/fisiologia , Alaska , Animais , Ecótipo , Geografia , Oceanos e Mares , Dinâmica Populacional , Análise de Regressão , Estações do Ano , Especificidade da Espécie
12.
Sci Rep ; 11(1): 6235, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737519

RESUMO

Some of the longest and most comprehensive marine ecosystem monitoring programs were established in the Gulf of Alaska following the environmental disaster of the Exxon Valdez oil spill over 30 years ago. These monitoring programs have been successful in assessing recovery from oil spill impacts, and their continuation decades later has now provided an unparalleled assessment of ecosystem responses to another newly emerging global threat, marine heatwaves. The 2014-2016 northeast Pacific marine heatwave (PMH) in the Gulf of Alaska was the longest lasting heatwave globally over the past decade, with some cooling, but also continued warm conditions through 2019. Our analysis of 187 time series from primary production to commercial fisheries and nearshore intertidal to offshore oceanic domains demonstrate abrupt changes across trophic levels, with many responses persisting up to at least 5 years after the onset of the heatwave. Furthermore, our suite of metrics showed novel community-level groupings relative to at least a decade prior to the heatwave. Given anticipated increases in marine heatwaves under current climate projections, it remains uncertain when or if the Gulf of Alaska ecosystem will return to a pre-PMH state.

13.
Sci Rep ; 10(1): 18079, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093542

RESUMO

Trophic downgrading in coastal waters has occurred globally during recent decades. On temperate rocky reefs, this has resulted in widespread kelp deforestation and the formation of sea urchin barrens. We hypothesize that the intact kelp forest communities are more spatially variable than the downgraded urchin barren communities, and that these differences are greatest at small spatial scales where the influence of competitive and trophic interactions is strongest. To address this, benthic community surveys were done in kelp forests and urchin barrens at nine islands spanning 1230 km of the Aleutian Archipelago where the loss of predatory sea otters has resulted in the trophic downgrading of the region's kelp forests. We found more species and greater total spatial variation in community composition within the kelp forests than in the urchin barrens. Further, the kelp forest communities were most variable at small spatial scales (within each forest) and least variable at large spatial scales (among forests on different islands), while the urchin barren communities followed the opposite pattern. This trend was consistent for different trophic guilds (primary producers, grazers, filter feeders, predators). Together, this suggests that Aleutian kelp forests create variable habitats within their boundaries, but that the communities within these forests are generally similar across the archipelago. In contrast, urchin barrens exhibit relatively low variability within their boundaries, but these communities vary substantially among different barrens across the archipelago. We propose this represents a shift from small-scale biological control to large-scale oceanographic control of these communities.

14.
PLoS One ; 15(3): e0226173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32130220

RESUMO

Trophic interactions can result in changes to the abundance and distribution of habitat-forming species that dramatically reduce ecosystem functioning. In the coastal zone of the Aleutian Archipelago, overgrazing by herbivorous sea urchins that began in the 1990s resulted in widespread deforestation of the region's kelp forests, which led to lower macroalgal abundances and higher benthic irradiances. We examined how this deforestation impacted ecosystem function by comparing patterns of net ecosystem production (NEP), gross primary production (GPP), ecosystem respiration (Re), and the range between GPP and Re in remnant kelp forests, urchin barrens, and habitats that were in transition between the two habitat types at nine islands that spanned more than 1000 kilometers of the archipelago. Our results show that deforestation, on average, resulted in a 24% reduction in GPP, a 26% reduction in Re, and a 24% reduction in the range between GPP and Re. Further, the transition habitats were intermediate to the kelp forests and urchin barrens for these metrics. These opposing metabolic processes remained in balance; however, which resulted in little-to-no changes to NEP. These effects of deforestation on ecosystem productivity, however, were highly variable between years and among the study islands. In light of the worldwide declines in kelp forests observed in recent decades, our findings suggest that marine deforestation profoundly affects how coastal ecosystems function.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Kelp/crescimento & desenvolvimento , Modelos Biológicos , Ouriços-do-Mar/fisiologia , Animais
15.
Science ; 369(6509): 1351-1354, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32913100

RESUMO

Predator loss and climate change are hallmarks of the Anthropocene yet their interactive effects are largely unknown. Here, we show that massive calcareous reefs, built slowly by the alga Clathromorphum nereostratum over centuries to millennia, are now declining because of the emerging interplay between these two processes. Such reefs, the structural base of Aleutian kelp forests, are rapidly eroding because of overgrazing by herbivores. Historical reconstructions and experiments reveal that overgrazing was initiated by the loss of sea otters, Enhydra lutris (which gave rise to herbivores capable of causing bioerosion), and then accelerated with ocean warming and acidification (which increased per capita lethal grazing by 34 to 60% compared with preindustrial times). Thus, keystone predators can mediate the ways in which climate effects emerge in nature and the pace with which they alter ecosystems.


Assuntos
Mudança Climática , Recifes de Corais , Extinção Biológica , Cadeia Alimentar , Kelp , Rodófitas , Alaska
16.
PLoS One ; 8(8): e71396, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23967204

RESUMO

Gastropod assemblages from nearshore rocky habitats were studied over large spatial scales to (1) describe broad-scale patterns in assemblage composition, including patterns by feeding modes, (2) identify latitudinal pattern of biodiversity, i.e., richness and abundance of gastropods and/or regional hotspots, and (3) identify potential environmental and anthropogenic drivers of these assemblages. Gastropods were sampled from 45 sites distributed within 12 Large Marine Ecosystem regions (LME) following the NaGISA (Natural Geography in Shore Areas) standard protocol (www.nagisa.coml.org). A total of 393 gastropod taxa from 87 families were collected. Eight of these families (9.2%) appeared in four or more different LMEs. Among these, the Littorinidae was the most widely distributed (8 LMEs) followed by the Trochidae and the Columbellidae (6 LMEs). In all regions, assemblages were dominated by few species, the most diverse and abundant of which were herbivores. No latitudinal gradients were evident in relation to species richness or densities among sampling sites. Highest diversity was found in the Mediterranean and in the Gulf of Alaska, while highest densities were found at different latitudes and represented by few species within one genus (e.g. Afrolittorina in the Agulhas Current, Littorina in the Scotian Shelf, and Lacuna in the Gulf of Alaska). No significant correlation was found between species composition and environmental variables (r≤0.355, p>0.05). Contributing variables to this low correlation included invasive species, inorganic pollution, SST anomalies, and chlorophyll-a anomalies. Despite data limitations in this study which restrict conclusions in a global context, this work represents the first effort to sample gastropod biodiversity on rocky shores using a standardized protocol across a wide scale. Our results will generate more work to build global databases allowing for large-scale diversity comparisons of rocky intertidal assemblages.


Assuntos
Ecossistema , Meio Ambiente , Gastrópodes , Animais , Biodiversidade , Oceanografia , Densidade Demográfica , Dinâmica Populacional , Análise Espacial
17.
J Phycol ; 48(4): 897-901, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27009000

RESUMO

The Aleutian Archipelago coastal ecosystem has undergone a dramatic change in community composition during the past two decades. Following the removal of ∼99% of the sea otters, Enhydra lutris, from the ecosystem, changes to the benthic communities resulted in widespread losses to most of the region's kelp beds and corresponding increases in the prevalence of urchin barrens. Within the urchin barrens, the few kelps that have remained are exposed to elevated light, nutrients and currents, all of which may enhance their physiological condition and thus result in greater fecundity. To explore this further, we examined patterns of sporophyte fecundity in the dominant canopy-forming kelp, Eualaria fistulosa, in both urchin barrens and in nearby kelp beds at seven Aleutian Islands spanning a range of 800 km. We found that the average weight of E. fistulosa sporophyll bundles was significantly greater on sporophytes occurring in the urchin barrens than in the nearby kelp beds. Furthermore, the average number of zoospores released per cm(2) of sporophyll area was also significantly greater in individuals from the urchin barrens than the nearby kelp beds. When these two metrics were combined, our results suggest that individual E. fistulosa sporophytes occurring in the urchin barrens may produce as many as three times more zoospores than individual E. fistulosa sporophytes occurring in the nearby kelp beds, and thus they may contribute disproportionately to the following year's sporophyte recruitment in both urchin barrens and the adjacent kelp beds.

18.
PLoS One ; 6(4): e18606, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21533220

RESUMO

Relationships of diversity, distribution and abundance of benthic decapods in intertidal and shallow subtidal waters to 10 m depth are explored based on data obtained using a standardized protocol of globally-distributed samples. Results indicate that decapod species richness overall is low within the nearshore, typically ranging from one to six taxa per site (mean = 4.5). Regionally the Gulf of Alaska decapod crustacean community structure was distinguishable by depth, multivariate analysis indicating increasing change with depth, where assemblages of the high and mid tide, low tide and 1 m, and 5 and 10 m strata formed three distinct groups. Univariate analysis showed species richness increasing from the high intertidal zone to 1 m subtidally, with distinct depth preferences among the 23 species. A similar depth trend but with peak richness at 5 m was observed when all global data were combined. Analysis of latitudinal trends, confined by data limitations, was equivocal on a global scale. While significant latitudinal differences existed in community structure among ecoregions, a semi-linear trend in changing community structure from the Arctic to lower latitudes did not hold when including tropical results. Among boreal regions the Canadian Atlantic was relatively species poor compared to the Gulf of Alaska, whereas the Caribbean and Sea of Japan appeared to be species hot spots. While species poor, samples from the Canadian Atlantic were the most diverse at the higher infraordinal level. Linking 11 environmental variables available for all sites to the best fit family-based biotic pattern showed a significant relationship, with the single best explanatory variable being the level of organic pollution and the best combination overall being organic pollution and primary productivity. While data limitations restrict conclusions in a global context, results are seen as a first-cut contribution useful in generating discussion and more in-depth work in the still poorly understood field of biodiversity distribution.


Assuntos
Biodiversidade , Decápodes/classificação , Ecossistema , Animais , Geografia
19.
PLoS One ; 5(9): e12946, 2010 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-20886075

RESUMO

This study examined spatial relationships between rocky shore polychaete assemblages and environmental variables over broad geographical scales, using a database compiled within the Census of Marine Life NaGISA (Natural Geography In Shore Areas) research program. The database consisted of abundance measures of polychaetes classified at the genus and family levels for 74 and 93 sites, respectively, from nine geographic regions. We tested the general hypothesis that the set of environmental variables emerging as potentially important drivers of variation in polychaete assemblages depend on the spatial scale considered. Through Moran's eigenvector maps we indentified three submodels reflecting spatial relationships among sampling sites at intercontinental (>10,000 km), continental (1000-5000 km) and regional (20-500 km) scales. Using redundancy analysis we found that most environmental variables contributed to explain a large and significant proportion of variation of the intercontinental submodel both for genera and families (54% and 53%, respectively). A subset of these variables, organic pollution, inorganic pollution, primary productivity and nutrient contamination was also significantly related to spatial variation at the continental scale, explaining 25% and 32% of the variance at the genus and family levels, respectively. These variables should therefore be preferably considered when forecasting large-scale spatial patterns of polychaete assemblages in relation to ongoing or predicted changes in environmental conditions. None of the variables considered in this study were significantly related to the regional submodel.


Assuntos
Ecossistema , Poliquetos/classificação , Animais , Biodiversidade , Meio Ambiente , Geografia
20.
PLoS One ; 5(12): e14354, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21179546

RESUMO

Assemblages associated with intertidal rocky shores were examined for large scale distribution patterns with specific emphasis on identifying latitudinal trends of species richness and taxonomic distinctiveness. Seventy-two sites distributed around the globe were evaluated following the standardized sampling protocol of the Census of Marine Life NaGISA project (www.nagisa.coml.org). There were no clear patterns of standardized estimators of species richness along latitudinal gradients or among Large Marine Ecosystems (LMEs); however, a strong latitudinal gradient in taxonomic composition (i.e., proportion of different taxonomic groups in a given sample) was observed. Environmental variables related to natural influences were strongly related to the distribution patterns of the assemblages on the LME scale, particularly photoperiod, sea surface temperature (SST) and rainfall. In contrast, no environmental variables directly associated with human influences (with the exception of the inorganic pollution index) were related to assemblage patterns among LMEs. Correlations of the natural assemblages with either latitudinal gradients or environmental variables were equally strong suggesting that neither neutral models nor models based solely on environmental variables sufficiently explain spatial variation of these assemblages at a global scale. Despite the data shortcomings in this study (e.g., unbalanced sample distribution), we show the importance of generating biological global databases for the use in large-scale diversity comparisons of rocky intertidal assemblages to stimulate continued sampling and analyses.


Assuntos
Invertebrados/fisiologia , Animais , Biodiversidade , Bivalves/metabolismo , Conservação dos Recursos Naturais , Bases de Dados Factuais , Demografia , Ecologia , Ecossistema , Meio Ambiente , Biologia Marinha/métodos , Oceanos e Mares , Rodófitas/metabolismo , Temperatura , Thoracica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA