Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Cell Biochem ; 124(4): 533-544, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36791278

RESUMO

The human G protein coupled membrane receptor (GPR17), the sensor of brain damage, is identified as a biomarker for many neurological diseases. In human brain tissue, GPR17 exist in two isoforms, long and short. While cryo-electron microscopy technology has provided the structure of the long isoform of GPR17 with Gi complex, the structure of the short isoform and its activation mechanism remains unclear. Recently, we theoretically modeled the structure of the short isoform of GPR17 with Gi signaling protein and identified novel ligands. In the present work, we demonstrated the presence of two distinct ligand binding sites in the short isoform of GPR17. The molecular docking of GPR17 with endogenous (UDP) and synthetic ligands (T0510.3657, MDL29950) found the presence of two distinct binding pockets. Our observations revealed that endogenous ligand UDP can bind stronger in two different binding pockets as evidenced by glide and autodock vina scores, whereas the other two ligand's binding with GPR17 has less docking score. The analysis of receptor-UDP interactions shows complexes' stability in the lipid environment by 100 ns atomic molecular dynamics simulations. The amino acid residues VAL83, ARG87, and PHE111 constitute ligand binding site 1, whereas site 2 constitutes ASN67, ARG129, and LYS232. Root mean square fluctuation analysis showed the residues 83, 87, and 232 with higher fluctuations during molecular dynamics simulation in both binding pockets. Our findings imply that the residues of GPR17's two binding sites are crucial, and their interaction with UDP reveals the protein's hidden signaling and communication properties. Furthermore, this finding may assist in the development of targeted therapies for the treatment of neurological diseases.


Assuntos
Receptores Acoplados a Proteínas G , Difosfato de Uridina , Humanos , Ligantes , Simulação de Acoplamento Molecular , Microscopia Crioeletrônica , Receptores Acoplados a Proteínas G/metabolismo , Sítios de Ligação , Isoformas de Proteínas/metabolismo
2.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569654

RESUMO

The tropomyosin receptor kinase A (TrkA) family of receptor tyrosine kinases (RTKs) emerge as a potential target for glioblastoma (GBM) treatment. Benzenesulfonamide analogs were identified as kinase inhibitors possessing promising anticancer properties. In the present work, four known and two novel benzenesulfonamide derivatives were synthesized, and their inhibitory activities in TrkA overexpressing cells, U87 and MEF cells were investigated. The cytotoxic effect of benzenesulfonamide derivatives and cisplatin was determined using trypan blue exclusion assays. The mode of interaction of benzenesulfonamides with TrkA was predicted by docking and structural analysis. ADMET profiling was also performed for all compounds to calculate the drug likeness property. Appropriate QSAR models were developed for studying structure-activity relationships. Compound 4-[2-(4,4-dimethyl-2,6-dioxocyclohexylidene)hydrazinyl]-N-(5-methyl-1,3,4-thiadiazol-2-yl)benzenesulfon-amide (AL106) and 4-[2-(1,3-dioxo-1,3-dihydro-2H-inden-2-ylidene)hydrazinyl]-N-(5-methyl-1,3,4-thiadiazol-2-yl)benzenesulfonamide (AL107) showed acceptable binding energies with the active sites for human nerve growth factor receptor, TrkA. Here, AL106 was identified as a potential anti-GBM compound, with an IC50 value of 58.6 µM with a less toxic effect in non-cancerous cells than the known chemotherapeutic agent, cisplatin. In silico analysis indicated that AL106 formed prominent stabilizing hydrophobic interactions with Tyr359, Ser371, Ile374 and charged interactions with Gln369 of TrkA. Furthermore, in silico analysis of all benzenesulfonamide derivatives revealed that AL106 has good pharmacokinetics properties, drug likeness and toxicity profiles, suggesting the compound may be suitable for clinical trial. Thus, benzenesulfonamide analog, AL106 could potentially induce GBM cell death through its interaction with TrkA and might be an attractive strategy for developing a drug targeted therapy to treat glioblastoma.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Cisplatino/farmacologia , Glioblastoma/tratamento farmacológico , Relação Estrutura-Atividade , Antineoplásicos/química , Simulação de Acoplamento Molecular , Proliferação de Células , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Benzenossulfonamidas
3.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419230

RESUMO

Glioblastoma (GBM) is the most common malignant brain tumor and its malignant phenotypic characteristics are classified as grade IV tumors. Molecular interactions, such as protein-protein, protein-ncRNA, and protein-peptide interactions are crucial to transfer the signaling communications in cellular signaling pathways. Evidences suggest that signaling pathways of stem cells are also activated, which helps the propagation of GBM. Hence, it is important to identify a common signaling pathway that could be visible from multiple GBM gene expression data. microRNA signaling is considered important in GBM signaling, which needs further validation. We performed a high-throughput analysis using micro array expression profiles from 574 samples to explore the role of non-coding RNAs in the disease progression and unique signaling communication in GBM. A series of computational methods involving miRNA expression, gene ontology (GO) based gene enrichment, pathway mapping, and annotation from metabolic pathways databases, and network analysis were used for the analysis. Our study revealed the physiological roles of many known and novel miRNAs in cancer signaling, especially concerning signaling in cancer progression and proliferation. Overall, the results revealed a strong connection with stress induced senescence, significant miRNA targets for cell cycle arrest, and many common signaling pathways to GBM in the network.


Assuntos
Envelhecimento/genética , Neoplasias Encefálicas/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , MicroRNAs/genética , Algoritmos , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Modelos Genéticos , Transdução de Sinais/genética
4.
Int J Biol Macromol ; 254(Pt 3): 127909, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951450

RESUMO

Nerve growth factor (NGF) and its receptor, tropomyosin kinase receptor kinase type A (TrkA) is emerging as an important target for Glioblastoma (GBM) treatment. TrkA is the cancer biomarker majorly involved in tumor invasion and migration into nearby normal tissue. However, currently, available Trk inhibitors exhibit many adverse effects in cancer patients, thus demanding a novel class of ligands to regulate Trk signaling. Here, we exploited the role of TrkA (NTRK1) expression from the 651 datasets of brain tumors. RNA sequence analysis identified overexpression of NTRK1 in GBM, recurrent GBM as well in Oligoastrocytoma patients. Also, TrkA expression tends to increase over the higher grades of GBM. TrkA protein targeting hydrazone derivatives, R48, R142, and R234, were designed and their mode of interaction was studied using molecular docking and dynamic simulation studies. Ligands' stability and binding assessment reveals R48, 2 2-(2-(2-hydroxy-4-nitrophenyl) hydrazineylidene)-1-phenylbutane-1,3-dione, as a potent ligand that interacts well with TrkA's hydrophobic residues, Ile, Phe, Leu, Ala, and Val. R48- TrkA exhibits stable binding potentials with an average RMSD value <0.8 nm. R48 obeyed Lipinski's rule of five and possessed the best oral bioavailability, suggesting R48 as a potential compound with drug-likeness properties. In-vitro analysis also revealed that R48 exhibited a higher cytotoxicity effect for U87 GBM cells than TMZ with the IC50 value of 68.99 µM. It showed the lowest percentage of cytotoxicity to the non-cancerous TrkA expressing MEF cells. However, further SiRNA analysis validates the non-specific binding of R48, necessitating structural alteration for the development of R48-based TrkA inhibitor for GBM therapeutics.


Assuntos
Glioblastoma , Receptor trkA , Humanos , Receptor trkA/genética , Receptor trkA/metabolismo , Simulação de Acoplamento Molecular , Recidiva Local de Neoplasia , Transdução de Sinais , Inibidores de Proteínas Quinases/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia
5.
Br J Pharmacol ; 181(1): 107-124, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37183661

RESUMO

BACKGROUND AND PURPOSE: Colorectal cancer (CRC) is the second most lethal disease, with high mortality due to its heterogeneity and chemo-resistance. Here, we have focused on the epidermal growth factor receptor (EGFR) as an effective therapeutic target in CRC and studied the effects of polyphenols known to modulate several key signalling mechanisms including EGFR signalling, associated with anti-proliferative and anti-metastatic properties. EXPERIMENTAL APPROACH: Using ligand- and structure-based cheminformatics, we developed three potent, selective alkylaminophenols, 2-[(3,4-dihydroquinolin-1(2H)-yl)(p-tolyl)methyl]phenol (THTMP), 2-[(1,2,3,4-tetrahydroquinolin-1-yl)(4-methoxyphenyl)methyl]phenol (THMPP) and N-[2-hydroxy-5-nitrophenyl(4'-methylphenyl)methyl]indoline (HNPMI). These alkylaminophenols were assessed for EGFR interaction, EGFR-pathway modulation, cytotoxic and apoptosis induction, caspase activation and transcriptional and translational regulation. The lead compound HNPMI was evaluated in mice bearing xenografts of CRC cells. KEY RESULTS: Of the three alkylaminophenols tested, HNPMI exhibited the lowest IC50 in CRC cells and potential cytotoxic effects on other tumour cells. Modulation of EGFR pathway down-regulated protein levels of osteopontin, survivin and cathepsin S, leading to apoptosis. Cell cycle analysis revealed that HNPMI induced G0/G1 phase arrest in CRC cells. HNPMI altered the mRNA for and protein levels of several apoptosis-related proteins including caspase 3, BCL-2 and p53. HNPMI down-regulated the proteins crucial to oncogenesis in CRC cells. Assays in mice bearing CRC xenografts showed that HNPMI reduced the relative tumour volume. CONCLUSIONS AND IMPLICATIONS: HNPMI is a promising EGFR inhibitor for clinical translation. HNPMI regulated apoptosis and oncogenesis by modulating BCL-2/BAX and p53 in CRC cell lines, showing potential as a therapeutic agent in the treatment of CRC.


Assuntos
Antineoplásicos , Neoplasias do Colo , Neoplasias Colorretais , Humanos , Animais , Camundongos , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , Proteína X Associada a bcl-2/uso terapêutico , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas Reguladoras de Apoptose/metabolismo , Receptores ErbB/metabolismo , Carcinogênese , Transformação Celular Neoplásica , Fenóis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico
6.
J Biomol Struct Dyn ; 40(6): 2586-2599, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33140689

RESUMO

Glioblastoma Multiforme (GBM) is one of the most aggressive malignant tumors in the central nervous system, which arises due to the failure or crosstalk in the signaling networks. GPR17, an orphan G protein-coupled receptor is anticipated to be associated with the biology of the GBM disease progression. In the present study, we have identified the differential expressions of around 170 genes along with GPR17 through the RNA-Seq analysis of 169 GBM samples. Coordinated expression patterns of all other gene products with this receptor were analysed using gene ontology and protein-protein interaction data. Several crucial signaling components and genes that play a significant role in tumor progression have been identified among which GPR17 was found to be significantly interacting with about 30 different pathways. High-throughput molecular docking of GPR17 by homology-based model against differentially expressed proteins, showed effective recognition and binding of PX, SH3, and Ig-like domains besides Gi protein. Pathways of PI3, Src, Ptdn, Ras, cytoplasmic tyrosine kinases, phospholipases, nexins and other proteins possessing these structural domains are identified as critical signaling components of the complex GBM signaling network. Our findings also provide a mechanistic insight of GPR17-T0510-3657 interaction, which potentially regulates the interaction of PX domain and helical mPTS recognition domain-containing proteins. Overall, our results demonstrate that GPR17 mediated signaling networks could be used as a therapeutic target for GBM. Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Transdução de Sinais , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Simulação de Acoplamento Molecular , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transcriptoma
7.
Int J Biol Macromol ; 189: 142-150, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34425116

RESUMO

Prostate cancer is a heterogeneous, slow growing asymptomatic cancer that predominantly affects man. A purinergic G-protein coupled receptor, P2Y1R, is targeted for its therapeutic value since it plays a crucial role in many key molecular events of cancer progression and invasion. Our previous study demonstrated that indoline derivative, 1 ((1-(2-Hydroxy-5-nitrophenyl) (4-hydroxyphenyl) methyl)indoline-4­carbonitrile; HIC), stimulates prostate cancer cell (PCa) growth inhibition via P2Y1R. However, the mode of interaction of P2Y1R with HIC involved in this process remains unclear. Here, we have reported the molecular interactions of HIC with P2Y1R. Molecular dynamics simulation was performed that revealed the stable specific binding of the protein-ligand complex. In vitro analysis has shown increased apoptosis of PCa-cells, PC3, and DU145, upon specific interaction of P2Y1R-HIC. This was further validated using siRNA analysis that showed a higher percentage of apoptotic cells in PCa-cells transfected with P2Y-siRNA-MRS2365 than P2Y-siRNA-HIC treatment. Decreased mitochondrial membrane potential (MMP) activity and reduced glutathione (GSH) level show their role in P2Y1R-HIC mediated apoptosis. These in silico and in vitro results confirmed that HIC could induce mitochondrial apoptotic signaling through the P2Y1R activation. Thus, HIC being a potential ligand upon interaction with P2Y1R might have therapeutic value for the treatment of prostate cancer.


Assuntos
Apoptose , Indóis/farmacologia , Neoplasias da Próstata/patologia , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y1/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Glutationa/metabolismo , Humanos , Indóis/química , Masculino , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Simulação de Dinâmica Molecular , Receptores Purinérgicos P2Y1/química
8.
J Med Chem ; 64(15): 10908-10918, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34304559

RESUMO

The discovery of a potential ligand-targeting G protein-coupled receptor 17 (GPR17) is important for developing chemotherapeutic agents against glioblastoma multiforme (GBM). We used the integration of ligand- and structure-based cheminformatics and experimental approaches for identifying the potential GPR17 ligand for GBM treatment. Here, we identified a novel indoline-derived phenolic Mannich base as an activator of GPR17 using molecular docking of over 6000 indoline derivatives. One of the top 10 hit molecules, CHBC, with a glide score of -8.390 was synthesized through a multicomponent Petasis borono-Mannich reaction. The CHBC-GPR17 interaction leads to a rapid decrease of cAMP and Ca2+. CHBC exhibits the cytotoxicity effect on GBM cells in a dose-dependent manner with an IC50 of 85 µM, whereas the known agonist MDL29,951 showed a negligible effect. Our findings suggest that the phenolic Mannich base could be a better GPR17 agonist than MDL29,951, and further uncovering their pharmacological properties could potentiate an inventive GBM treatment.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Indóis/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Indóis/síntese química , Indóis/química , Ligantes , Estrutura Molecular , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade
9.
Cancers (Basel) ; 13(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34359676

RESUMO

Glioblastoma, an invasive high-grade brain cancer, exhibits numerous treatment challenges. Amongst the current therapies, targeting functional receptors and active signaling pathways were found to be a potential approach for treating GBM. We exploited the role of endogenous expression of GPR17, a G protein-coupled receptor (GPCR), with agonist GA-T0 in the survival and treatment of GBM. RNA sequencing was performed to understand the association of GPR17 expression with LGG and GBM. RT-PCR and immunoblotting were performed to confirm the endogenous expression of GPR17 mRNA and its encoded protein. Biological functions of GPR17 in the GBM cells was assessed by in vitro analysis. HPLC and histopathology in wild mice and an acute-toxicity analysis in a patient-derived xenograft model were performed to understand the clinical implication of GA-T0 targeting GPR17. We observed the upregulation of GPR17 in association with improved survival of LGG and GBM, confirming it as a predictive biomarker. GA-T0-stimulated GPR17 leads to the inhibition of cyclic AMP and calcium flux. GPR17 signaling activation enhances cytotoxicity against GBM cells and, in patient tissue-derived mesenchymal subtype GBM cells, induces apoptosis and prevents proliferation by stoppage of the cell cycle at the G1 phase. Modulation of the key genes involved in DNA damage, cell cycle arrest, and in several signaling pathways, including MAPK/ERK, PI3K-Akt, STAT, and NF-κB, prevents tumor regression. In vivo activation of GPR17 by GA-T0 reduces the tumor volume, uncovering the potential of GA-T0-GPR17 as a targeted therapy for GBM treatment. Conclusion: Our analysis suggests that GA-T0 targeting the GPR17 receptor presents a novel therapy for treating glioblastoma.

10.
Sci Rep ; 9(1): 18938, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831761

RESUMO

Purinergic receptor is a potential drug target for neuropathic pain, Alzheimer disease, and prostate cancer. Focusing on the structure-based ligand discovery, docking analysis on the crystal structure of P2Y1 receptor (P2Y1R) with 923 derivatives of 1-indolinoalkyl 2-phenolic compound is performed to understand the molecular insights of the receptor. The structural model identified the top novel ligands, 426 (compound 1) and 636 (compound 2) having highest binding affinity with the docking score of -7.38 and -6.92. We have reported the interaction efficacy and the dynamics of P2Y1R protein with the ligands. The best hits synthesized were experimentally optimized as a potent P2Y1 agonists. These ligands exhibits anti-proliferative effect against the PC-3 and DU-145 cells (IC50 = 15 µM - 33 µM) with significant increase in the calcium level in dose- and time-dependent manner. Moreover, the activation of P2Y1R induced the apoptosis via Capase3/7 and ROS signaling pathway. Thus it is evidenced that the newly synthesized ligands, as a P2Y1R agonists could potentially act as a therapeutic drug for treating prostate cancer.


Assuntos
Antineoplásicos , Simulação de Acoplamento Molecular , Proteínas de Neoplasias , Neoplasias da Próstata , Agonistas do Receptor Purinérgico P2Y , Receptores Purinérgicos P2Y1 , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Humanos , Ligantes , Masculino , Camundongos , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Células PC-3 , Neoplasias da Próstata/química , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Agonistas do Receptor Purinérgico P2Y/síntese química , Agonistas do Receptor Purinérgico P2Y/química , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y1/química , Receptores Purinérgicos P2Y1/metabolismo
11.
Cells ; 8(12)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842391

RESUMO

Glioblastoma (GB), a grade IV glioma, with high heterogeneity and chemoresistance, obligates a multidimensional antagonist to debilitate its competence. Considering the previous reports on thioesters as antitumor compounds, this paper investigates on use of this densely functionalized sulphur rich molecule as a potent anti-GB agent. Bio-evaluation of 12 novel compounds, containing α-thioether ketone and orthothioester functionalities, identified that five analogs exhibited better cytotoxic profile compared to standard drug cisplatin. Detailed toxicity studies of top compound were evaluated in two cell lines, using cell viability test, apoptotic activity, oxidative stress and caspase activation and RNA-sequencing analysis, to obtain a comprehensive molecular profile of drug activity. The most effective molecule presented half maximal inhibitory concentration (IC50) values of 27 µM and 23 µM against U87 and LN229 GB cells, respectively. Same compound effectively weakened various angiogenic pathways, mainly MAPK and JAK-STAT pathways, downregulating VEGF. Transcriptome analysis identified significant promotion of apoptotic genes, and genes involved in cell cycle arrest, with concurrent inhibition of various tyrosine kinase cascades and stress response genes. Docking and immunoblotting studies suggest EGFR as a strong target of the orthothioester identified. Therefore, orthothioesters can potentially serve as a multi-dimensional chemotherapeutic possessing strong cytotoxic, anti-angiogenic and chemo-sensitization activity, challenging glioblastoma pathogenesis.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Receptores ErbB/química , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Humanos , Concentração Inibidora 50 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
12.
Eur J Med Chem ; 166: 291-303, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30731398

RESUMO

Nerve growth factor receptor (NGFR), a member of kinase protein, is emerging as an important target for Glioblastoma (GBM) treatment. Overexpression of NGFR is observed in many metastatic cancers including GBM, promoting tumor migration and invasion. Hydrazones have been reported to effectively interact with receptor tyrosine kinases (RTKs). We report herein the synthesis of 23 arylhydrazones of active methylene compounds (AHAMCs) compounds and their anti-proliferative activity against GBM cell lines, LN229 and U87. Compound R234, 2-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl)benzonitrile, was identified as the most active anti-neoplastic compound, with the IC50 value ranging 87 µM - 107 µM. Molecular docking simulations of the synthesized compounds into the active site of tyrosine receptor kinase A (TrkA), demonstrated a strong binding affinity with R234 and concurs well with the obtained biological results. R234 was found to be a negative regulator of PI3K/Akt/mTOR pathway and an enhancer of p53 expression. In addition, R234 treated GBM cells exhibited the downregulation of cyclins, cyclin-dependent kinases and other key molecules involved in cell cycle such as CCNE, E2F, CCND, CDK6, indicating that R234 induces cell cycle arrest at G1/S. R234 also exerted its apoptotic effects independent of caspase3/7 activity, in both cell lines. In U87 cells, R234 induced oxidative effects whereas LN229 cells annulled oxidative stress. The study thus concludes that R234, being a negative modulator of RTKs and cell cycle inhibitor, may represent a novel class of anti-GBM drugs.


Assuntos
Glioblastoma/patologia , Nitrilas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Nitrilas/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA