Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Med Microbiol Immunol ; 207(2): 129-139, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29330591

RESUMO

The impact of planktonic and biofilm lifestyles of the clinical isolate Proteus mirabilis 9B-m on its lipopolysaccharide (O-polysaccharide, core region, and lipid A) was evaluated. Proteus mirabilis bacteria are able to form biofilm and lipopolysaccharide is one of the factors involved in the biofilm formation. Lipopolysaccharide was isolated from planktonic and biofilm cells of the investigated strain and analyzed by SDS-PAGE with silver staining, Western blotting and ELISA, as well as NMR and matrix-assisted laser desorption ionization time-of-flight mass spectrometry techniques. Chemical and NMR spectroscopic analyses revealed that the structure of the O-polysaccharide of P. mirabilis 9B-m strain did not depend on the form of cell growth, but the full-length chains of the O-antigen were reduced when bacteria grew in biofilm. The study also revealed structural modifications of the core region in the lipopolysaccharide of biofilm-associated cells-peaks assigned to compounds absent in cells from the planktonic culture and not previously detected in any of the known Proteus core oligosaccharides. No differences in the lipid A structure were observed. In summary, our study demonstrated for the first time that changes in the lifestyle of P. mirabilis bacteria leads to the modifications of their important virulence factor-lipopolysaccharide.


Assuntos
Biofilmes/crescimento & desenvolvimento , Lipopolissacarídeos/análise , Proteus mirabilis/química , Proteus mirabilis/crescimento & desenvolvimento , Western Blotting , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Humanos , Lipopolissacarídeos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Infecções por Proteus/microbiologia , Proteus mirabilis/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Coloração e Rotulagem
2.
Microbiology (Reading) ; 163(11): 1637-1640, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29034863

RESUMO

Genus Comamonas is a group of bacteria that are able to degrade a variety of environmental waste. Comamonas aquatica CJG (C. aquatica) in this genus is able to absorb low-density lipoprotein but not high-density lipoprotein of human serum. Using 1H and 13C NMR spectroscopy, we found that the O-polysaccharide (O-antigen) of this bacterium is comprised of a disaccharide repeat (O-unit) of d-glucose and 2-O-acetyl-l-rhamnose, which is shared by Serratia marcescens O6. The O-antigen gene cluster of C. aquatica, which is located between coaX and tnp4 genes, contains rhamnose synthesis genes, glycosyl and acetyl transferase genes, and ATP-binding cassette transporter genes, and therefore is consistent with the O-antigen structure determined here.


Assuntos
Comamonas/genética , Família Multigênica/genética , Antígenos O/química , Antígenos O/genética , Proteínas de Bactérias/química , Sequência de Carboidratos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Comamonas/química , Comamonas/enzimologia , Dissacarídeos/análise , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glucose , Antígenos O/isolamento & purificação , Estrutura Secundária de Proteína , Espectroscopia de Prótons por Ressonância Magnética , Ramnose
3.
Microbiology (Reading) ; 159(Pt 6): 1036-1043, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23579689

RESUMO

The O-polysaccharide was isolated by mild acid hydrolysis of the lipopolysaccharide of Proteus vulgaris HSC 438, and the following structure was established by chemical methods and one- and two-dimensional (1)H and (13)C NMR spectroscopy: →3)-ß-d-Quip4NAlo-(1→3)-α-d-Galp6Ac-(1→6)-α-d-Glcp-(1→3)-α-l-FucpNAc-(1→3)-ß-d-GlcpNAc-(1→, where d-Qui4N stands for 4-amino-4,6-dideoxy-d-glucose and Alo for N-((S)-1-carboxyethyl)-l-alanine (alanopine); only about half of the Gal residues are O-acetylated. This structure is unique among the Proteus O-polysaccharides, and therefore it is proposed to classify P. vulgaris HSC 438 into a new Proteus serogroup, O76. A serological cross-reactivity of HSC 438 O-antiserum and lipopolysaccharides of some other Proteus serogroups was observed and accounted for by shared epitopes on the O-polysaccharides or lipopolysaccharide core regions, including that associated with d-Qui4NAlo.


Assuntos
Alanina/análogos & derivados , Lipopolissacarídeos/imunologia , Antígenos O/química , Proteus vulgaris/química , Proteus vulgaris/imunologia , Alanina/análise , Reações Cruzadas , Dados de Sequência Molecular , Antígenos O/imunologia , Proteus vulgaris/classificação , Sorotipagem
4.
J Nat Prod ; 75(12): 2236-40, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23193973

RESUMO

A novel constituent of bacterial polysaccharides, 2,3,4-triacetamido-2,3,4-trideoxy-L-arabinose, was found in the O-specific polysaccharide from the lipopolysaccharide of Psychrobacter cryohalolentis K5(T) and identified by 1D and 2D (1)H and (13)C NMR studies of the polysaccharide and a disaccharide obtained by solvolysis of the polysaccharide with triflic acid. The following structure of the branched polysaccharide was established by sugar analysis, triflic acid solvolysis, Smith degradation, and 2D NMR spectroscopy.


Assuntos
Arabinose/análogos & derivados , Lipopolissacarídeos/química , Antígenos O/química , Polissacarídeos Bacterianos/química , Psychrobacter/química , Arabinose/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular
5.
Glycobiology ; 21(10): 1362-72, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21752864

RESUMO

Bacteria Shigella, the cause of shigellosis, evolved from the intestinal bacteria Escherichia coli. Based on structurally diverse O-specific polysaccharide chains of the lipopolysaccharides (LPSs; O-antigens), three from four Shigella species are subdivided into multiple serotypes. The central oligosaccharide of the LPS called core is usually conserved within genus but five core types called R1-R4 and K-12 have been recognized in E. coli. Structural data on the Shigella core are limited to S. sonnei, S. flexneri and one S. dysenteriae strain, which all share E. coli core types. In this work, we elucidated the core structure in 14 reference strains of S. dysenteriae and S. boydii. Core oligosaccharides were obtained by mild acid hydrolysis of the LPSs and studied using sugar analysis, high-resolution mass spectrometry and two-dimensional NMR spectroscopy. The R1, R3 and R4 E. coli core types were identified in 8, 3 and 2 Shigella strains, respectively. A novel core variant found in S. boydii type 16 differs from the R3 core in the lack of GlcNAc and the presence of a D-glycero-D-manno-heptose disaccharide extension. In addition, the structure of an oligosaccharide consisting of the core and one O-antigen repeat was determined in S. dysenteriae type 8. A clear correlation of the core type was observed with genetic grouping of Shigella strains but not with their traditional division to four species. This finding supports a notion on the existing Shigella species as invalid taxa and a suggestion of multiple independent origins of Shigella from E. coli clones.


Assuntos
Lipopolissacarídeos/química , Shigella boydii/genética , Configuração de Carboidratos , Escherichia coli/metabolismo , Heptoses/química , Heptoses/metabolismo , Hidrólise , Antígenos O/química , Oligossacarídeos/química , Shigella boydii/classificação , Shigella boydii/imunologia
6.
Biomolecules ; 11(10)2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34680043

RESUMO

Lipopolysaccharide (LPS), localized in the outer leaflet of the outer membrane, serves as the major surface component of the Gram-negative bacterial cell envelope responsible for the activation of the host's innate immune system. Variations of the LPS structure utilized by Gram-negative bacteria promote survival by providing resistance to components of the innate immune system and preventing recognition by TLR4. This review summarizes studies of the biosynthesis of Yersinia pseudotuberculosis complex LPSs, and the roles of their structural components in molecular mechanisms of yersiniae pathogenesis and immunogenesis.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Lipopolissacarídeos/química , Yersinia pseudotuberculosis/química , Interações Hospedeiro-Patógeno/genética , Humanos , Lipídeo A/genética , Lipídeo A/imunologia , Lipopolissacarídeos/genética , Lipopolissacarídeos/imunologia , Estrutura Molecular , Relação Estrutura-Atividade , Yersinia pseudotuberculosis/imunologia , Yersinia pseudotuberculosis/patogenicidade
7.
Org Biomol Chem ; 8(15): 3571-7, 2010 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-20539880

RESUMO

We established a peculiar structure of the O-specific polysaccharide (O-antigen) of a psychrotrophic strain of Acinetobacter lwoffii, EK30A, isolated from a 1.6-1.8 million-year-old Siberian permafrost subsoil sediment sample. The polysaccharide was released by mild acid degradation of the lipopolysaccharide and studied using chemical analyses, Smith degradation, (1)H and (13)C NMR spectroscopy and mass spectrometry. It was found to contain d-homoserine, which is N-linked to 4-amino-4,6-dideoxy-d-glucose (Qui4N) and is N-acylated itself with acetyl in about half of the repeating units or (S)-3-hydroxybutanoyl group in the other half. The following is the structure of the tetrasaccharide repeating unit of the polysaccharide: -->3)-beta-d-Quip4NAcyl-(1-->6)-alpha-d-Galp-(1-->4)-alpha-d-GalpNAc-(1-->3)-alpha-d-FucpNAc-(1--> where Acyl stands for either N-acetyl- or N-[(S)-3-hydroxybutanoyl]-d-homoseryl.


Assuntos
Acinetobacter/química , Homosserina/análise , Antígenos O/química , Sequência de Carboidratos , Sedimentos Geológicos/microbiologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Dados de Sequência Molecular , Antígenos O/isolamento & purificação , Microbiologia do Solo
8.
Mol Microbiol ; 68(2): 424-47, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18284593

RESUMO

Yersinia pseudotuberculosis O:2a harbours 6-deoxy-d-manno-heptose in its O-antigen. The biological function of 6-deoxyheptose and its role in virulence is unknown and its biosynthetic pathway has not been demonstrated experimentally. Here, we show that dmhA and dmhB are necessary for 6-deoxyheptose biosynthesis in Y. pseudotuberculosis. Their disruption resulted in the lack of 6-deoxyheptose in the O-unit and its replacement by d-glycero-d-manno-heptose, thus indicating relaxed specificity of the glycosyltransferases, polymerase and ligase involved in lipopolysaccharide synthesis. The dmhB mutant exhibited a lower content in ketooctonic acid (Ko)-containing core molecules and reduced ligation and polymerization of the O-unit. We also show that Tyr128 is essential for activity of DmhB, and that DmhB functions as an oligomer, based on the dominant negative effect of overexpression of DmhB Y128F in dmhA. Moreover, we demonstrate that 6-deoxyheptose is important for virulence-related functions of the outer membrane and its appendages in vitro, such as barrier function against bile salts, polymyxin and novobiocin, and flagella-mediated motility. Although both mutants colonized the mouse ceacum as well as the wild type, the dmhB mutant was impaired for colonization of the liver, suggesting that DmhB represents a potential therapeutic target.


Assuntos
Proteínas de Bactérias/metabolismo , Heptoses/biossíntese , Antígenos O/metabolismo , Yersinia pseudotuberculosis/química , Yersinia pseudotuberculosis/enzimologia , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Ácidos e Sais Biliares/farmacologia , Vias Biossintéticas , Ceco/microbiologia , Contagem de Colônia Microbiana , Eletroforese em Gel de Poliacrilamida , Deleção de Genes , Fígado/microbiologia , Locomoção , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Mutagênese Insercional , Novobiocina/farmacologia , Antígenos O/química , Antígenos O/isolamento & purificação , Polimixina B/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Baço/microbiologia , Yersinia pseudotuberculosis/crescimento & desenvolvimento , Yersinia pseudotuberculosis/patogenicidade , Infecções por Yersinia pseudotuberculosis/microbiologia
9.
J Bacteriol ; 190(9): 3176-84, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18310345

RESUMO

By the isolation of three different Aeromonas hydrophila strain AH-3 (serotype O34) mutants with an altered lipopolysaccharide (LPS) migration in gels, three genomic regions encompassing LPS core biosynthesis genes were identified and characterized. When possible, mutants were constructed using each gene from the three regions, containing seven, four, and two genes (regions 1 to 3, respectively). The mutant LPS core structures were elucidated by using mass spectrometry, methylation analysis, and comparison with the full core structure of an O-antigen-lacking AH-3 mutant previously established by us. Combining the gene sequence and complementation test data with the structural data and phenotypic characterization of the mutant LPSs enabled a presumptive assignment of all LPS core biosynthesis gene functions in A. hydrophila AH-3. The three regions and the genes contained are in complete agreement with the recently sequenced genome of A. hydrophila ATCC 7966. The functions of the A. hydrophila genes waaC in region 3 and waaF in region 2 were completely established, allowing the genome annotations of the two heptosyl transferase products not previously assigned. Having the functions of all genes involved with the LPS core biosynthesis and most corresponding single-gene mutants now allows experimental work on the role of the LPS core in the virulence of A. hydrophila.


Assuntos
Aeromonas hydrophila/genética , Genes Bacterianos , Antígenos O/biossíntese , Aeromonas hydrophila/metabolismo , Sequência de Carboidratos , Clonagem Molecular , Ordem dos Genes , Teste de Complementação Genética , Glicosiltransferases/genética , Dados de Sequência Molecular , Estrutura Molecular , Família Multigênica , Mutação , Antígenos O/química , Antígenos O/genética , Análise de Sequência de DNA
10.
FEMS Immunol Med Microbiol ; 53(3): 395-403, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18625011

RESUMO

The O-specific polysaccharide (OPS) isolated from the lipopolysaccharide of Proteus mirabilis O36 was found to have a pentasaccharide repeating unit of the following structure: -->2)-beta-D-Ribf-(1-->4)-beta-D-Galp-(1-->4)-alpha-D-GlcpNAc6Ac-(1-->4)-beta-D-Galp-(1-->3)-alpha-D-GlcpNAc-(1-->. The structure is unique among Proteus OPS, which is in agreement with the classification of this strain into a separate Proteus O-serogroup. Remarkably, the P. mirabilis O36-polysaccharide has the same structure as the OPS of Escherichia coli O153, except that the latter is devoid of O-acetyl groups. The cross-reaction of anti-O36 antibodies with the O-part of E. coli O153 lipopolysaccharide is observed. In the present study, two steps of serotyping Proteus strains are proposed: screening of dry mass with enzyme-linked immunosorbent assay and immunoblot with the crude lipopolysaccharides. This method allowed serotyping of 99 P. mirabilis strains infecting the human urinary tract. Three strains were classified into serogroup O36. The migration pattern of these lipopolysaccharides fraction with long O-specific PSs was similar to the standard laboratory P. mirabilis O36 (Prk 62/57) lipopolysaccharide. The relatively low number of clinical strains belonging to serogroup O36 did not correspond to the presence of anti-P. mirabilis O36 antibodies in the blood donors' sera. Twenty-five percent of tested sera contained a statistically significant elevated level of antibodies reacting with thermostable surface antigens of P. mirabilis O36. The presence and amount of antibodies correlated with Thr399Ile TLR4 polymorphism types (P=0.044).


Assuntos
Antígenos O/química , Antígenos O/imunologia , Proteus mirabilis/química , Proteus mirabilis/classificação , Anticorpos Antibacterianos/metabolismo , Sequência de Carboidratos , Reações Cruzadas , Escherichia coli/química , Humanos , Dados de Sequência Molecular , Proteus mirabilis/isolamento & purificação , Sorotipagem , Infecções Urinárias/microbiologia
11.
Carbohydr Res ; 343(8): 1383-9, 2008 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-18440499

RESUMO

The full structure of the long- and short-chain O-antigen of Yersinia pseudotuberculosis O:2a containing two uncommon deoxy sugars, abequose and 6-deoxy-d-manno-heptose (6dmanHep), was established, for the first time, by sugar analysis, NMR spectroscopy, and high-resolution ESIMS. Similar structural studies were also performed on two O:2a mutants with single disruption of 6dmanHep synthesis pathway genes each, which synthesize modified long-chain (dmhA mutant) and short-chain (both dmhA and dmhB mutants) O-antigens with 6dmanHep replaced by its putative biosynthetic precursor, D-glycero-D-manno-heptose.


Assuntos
Heptoses/química , Mutação , Antígenos O/química , Yersinia pseudotuberculosis/química , Sequência de Carboidratos , Heptoses/biossíntese , Heptoses/genética , Lipopolissacarídeos/isolamento & purificação , Lipopolissacarídeos/metabolismo , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Antígenos O/genética , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/metabolismo
12.
Carbohydr Res ; 343(14): 2486-8, 2008 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-18639241

RESUMO

Structures of the O-antigens of Yersinia pseudotuberculosis O2c and O3 were reinvestigated by NMR spectroscopy, including 2D (1)H,(1)H COSY, TOCSY, ROESY, (1)H,(13)C HSQC, and HMBC experiments. The following revised structure of the O2c tetrasaccharide repeating unit was established, which differs from the structure proposed earlier in the glycosylation pattern of the mannose residue at the branching point: [carbohydrate structure: see text] where Abe stands for 3,6-dideoxy-d-xylo-hexose. The structure of the Y. pseudotuberculosis O3 antigen reported earlier was confirmed.


Assuntos
Antígenos O/química , Yersinia pseudotuberculosis/química , Sequência de Carboidratos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular
13.
Carbohydr Res ; 460: 51-56, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29524727

RESUMO

Lipopolysaccharide was isolated from bacteria Yersinia intermedia H9-36/83 (O:17) and degraded with mild acid to give an O-specific polysaccharide, which was isolated by GPC on Sephadex G-50 and studied by sugar analysis and 1D and 2D NMR spectroscopy. The polysaccharide was found to contain 3-deoxy-3-[(R)-3-hydroxybutanoylamino]-d-fucose (d-Fuc3NR3Hb) and the following structure of the heptasaccharide repeating unit was established: The structure established is consistent with the gene content of the O-antigen gene cluster. The O-polysaccharide structure and gene cluster of Y. intermedia are related to those of Hafnia alvei 1211 and Escherichia coli O:103.


Assuntos
Lipopolissacarídeos/química , Antígenos O/química , Yersinia/química , Família Multigênica/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-29535976

RESUMO

Toll-like receptor 4 (TLR4) initiates immune response against Gram-negative bacteria upon specific recognition of lipid A moiety of lipopolysaccharide (LPS), the major component of their cell wall. Some natural differences between LPS variants in their ability to interact with TLR4 may lead to either insufficient activation that may not prevent bacterial growth, or excessive activation which may lead to septic shock. In this study we evaluated the biological activity of LPS isolated from pathogenic strain of Campylobacter jejuni, the most widespread bacterial cause of foodborne diarrhea in humans. With the help of hydrophobic chromatography and MALDI-TOF mass spectrometry we showed that LPS from a C. jejuni strain O2A consists of both hexaacyl and tetraacyl forms. Since such hypoacylation can result in a reduced immune response in humans, we assessed the activity of LPS from C. jejuni in mouse macrophages by measuring its capacity to activate TLR4-mediated proinflammatory cytokine and chemokine production, as well as NFκB-dependent reporter gene transcription. Our data support the hypothesis that LPS acylation correlates with its bioactivity.


Assuntos
Campylobacter jejuni/imunologia , Campylobacter jejuni/metabolismo , Doenças Transmitidas por Alimentos/microbiologia , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/imunologia , Animais , Campylobacter jejuni/patogenicidade , Citocinas/metabolismo , Fator Regulador 3 de Interferon/genética , Interleucina-1beta/metabolismo , Interleucina-6 , Lipídeo A/imunologia , Lipídeo A/isolamento & purificação , Lipídeo A/farmacologia , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/metabolismo
15.
Arch Immunol Ther Exp (Warsz) ; 55(5): 347-52, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18219766

RESUMO

INTRODUCTION: Lipopolysaccharide (endotoxin, LPS) is an important potential virulence factor of Proteus rods. The serological specificity of the bacteria is defined by the structure of the O-polysaccharide chain (O-antigen) of the LPS. Until now, 76 O-serogroups have been differentiated among Proteus strains. MATERIALS AND METHODS: LPSs were isolated from Proteus mirabilis TG 83, TG 319, and CCUG 10700 (OA) strains by phenol/water extraction. Antisera were raised by immunization of rabbits with heat-killed bacteria. Serological investigations were performed using enzyme immunosorbent assay, passive immunohemolysis, inhibition of both assays, absorption of antisera, and Western blot. RESULTS: The cross-reactive epitope shared by these strains and P. penner O72a,O72b is located on the O-polysaccharide and is most likely associated with an alpha-D-Glcp-(1-->6)-beta-D-GalpNAc disaccharide fragment. The serological data indicated the occurrence of two core types in the LPSs studied, one characteristic for P. mirabilis TG 319 and CCUG 10700 (OA) and the other for P. mirabilis TG 83 and O57. CONCLUSIONS: The serological and structural data showed that P. mirabilis TG 83, TG 319, CCUG 10700 (OA), and O57 have the same O-antigen structure and could be qualified to the Proteus O57 serogroup.


Assuntos
Antígenos O/química , Antígenos O/imunologia , Proteus mirabilis/química , Proteus mirabilis/imunologia , Animais , Proteus mirabilis/classificação , Proteus penneri/química , Proteus penneri/imunologia , Coelhos , Testes Sorológicos
16.
Carbohydr Res ; 342(14): 2061-6, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17601512

RESUMO

An unusual ribitol teichoic acid-like O-polysaccharide was isolated by mild acid degradation of the lipopolysaccharide from a previously non-classified Proteus vulgaris strain TG 276-1. Structural studies using chemical analyses and 2D (1)H and (13)C NMR spectroscopy showed that the polysaccharide is a zwitterionic polymer with a repeating unit containing 2-acetamido-4-amino-2,4,6-trideoxy-D-galactose (D-FucNAc4N) and two D-ribitol phosphate (D-Rib-ol-5-P) residues and having the following structure:[formula: see text] where the non-glycosylated ribitol residue is randomly mono-O-acetylated. Based on the unique O-polysaccharide structure and the finding that the strain studied is serologically separate among Proteus bacteria, we propose to classify P. vulgaris strain TG 276-1 into a new Proteus serogroup, O53.


Assuntos
Lipopolissacarídeos/química , Antígenos O , Proteus vulgaris/química , Proteus/classificação , Ácidos Teicoicos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Proteus vulgaris/classificação
17.
FEMS Immunol Med Microbiol ; 46(1): 85-99, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16420601

RESUMO

Highly phosphorylated core oligosaccharides and those substituted with one O-antigen repeating unit were obtained by mild acid degradation or strong alkaline hydrolysis of lipopolysaccharide samples from 23 reference strains representing all Pseudomonas aeruginosa O-serogroups. Studies by high-resolution electrospray ionization mass spectrometry and two-dimensional NMR spectroscopy revealed both conserved and variable structural features of the lipopolysaccharides of various O-serogroups. The upstream terminal saccharide of the O-antigen, which contributes most to the immunospecificity of the bacteria, was defined in 11 from a total of 13 O-serogroups. The data obtained link together the known biosynthesis pathways, genetics and serology of the P. aeruginosa lipopolysaccharide.


Assuntos
Lipopolissacarídeos/química , Antígenos O/química , Oligossacarídeos/química , Pseudomonas aeruginosa/imunologia , Configuração de Carboidratos , Sequência de Carboidratos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Espectrometria de Massas por Ionização por Electrospray
18.
Arch Immunol Ther Exp (Warsz) ; 54(4): 277-82, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16868723

RESUMO

INTRODUCTION: Bacteria of the genus Proteus are facultative pathogens which commonly cause urinary tract infections. Based on the serological specificity of the O-chain polysaccharide of the lipopolysaccharide (O-polysaccharide, O-antigen), strains of P. mirabilis and P. vulgaris have been classified into 60 serogroups. Studies on the chemical structure and serological specificity of the O-antigens aim at the elucidation of the molecular basis and improvement of the serological classification of these bacteria. MATERIALS AND METHODS: The O-polysaccharide was prepared by acetic acid degradation of the lipopolysaccharide isolated from dried bacterial mass of each strain by hot phenol/water extraction. (1)H- and (13)C-NMR spectroscopy was used for structural studies. Serological studies were performed with rabbit O-antisera using enzyme immunosorbent assay, passive hemolysis test, and the inhibition of reactions in these assays as well DOC-PAGE and Western blot. RESULTS: Four Proteus strains belonging to serogroups O17 and O35 were found to possess similar O-polysaccharide structures, in particular having the same carbohydrate backbone built up of tetrasaccharide repeating units. However, they differ in the presence or absence of additional substituents, such as phosphoethanolamine in P. mirabilis O17 and glucose in P. penneri O17, as well as in the pattern and degree of O-acetylation of various monosaccharide residues. Serological studies also showed close relationships between the O-antigens studied. CONCLUSIONS: Based on these data it is proposed to reclassify strain P. mirabilis PrK 61/57, formerly representing the O35 serogroup, into the serogroup O17 in the Kauffman-Perch classification system of Proteus.


Assuntos
Antígenos O/química , Proteus mirabilis/classificação , Proteus vulgaris/classificação , Configuração de Carboidratos , Sequência de Carboidratos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Proteus mirabilis/química , Proteus vulgaris/química , Proteus vulgaris/imunologia , Sorotipagem
19.
J Med Microbiol ; 65(11): 1260-1266, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27902374

RESUMO

Two clinical isolates from Polish patients, Proteus mirabilis 9B-m and Proteus genomospecies 3J-r, were found to be serologically related to P mirabilis O11. However, serological studies involving ELISA and Western blotting methods, using lipopolysaccharides (LPSs) extracted from the strains as antigens and native or adsorbed rabbit polyclonal O antisera, specific to the studied strains, revealed slight differences in the cross-reactivity and specificity of the two studied Proteus isolates, when compared to P. mirabilis O11. Two different O polysaccharides containing N-(d-galacturonoyl)-l-threonine were isolated from the LPSs of the isolates. Their structures were determined by chemical analysis and NMR spectroscopy and found to be related to the P. mirabilis O11 antigen structure established earlier, the 9B-m structure differing in the absence of the lateral glucose residue and the 3J-r structure in non-stoichiometric O-acetylation of the threonine residue only. Thus, the Proteus O11 serogroup should be divided into two subgroups: O11a, represented by the 9B-m isolate and O11a, b possessing the additional b epitope, containing the lateral residue of glucose and formed by the 3J-r isolate as well as P. mirabilis 25/57 belonging to O11 serogroup so far. O11a is the sixth new serotype found in Proteus spp. strains recently isolated from patients in central Poland.


Assuntos
Antígenos O/química , Antígenos O/metabolismo , Infecções por Proteus/microbiologia , Proteus mirabilis/isolamento & purificação , Treonina/análise , Animais , Humanos , Espectroscopia de Ressonância Magnética , Proteus mirabilis/classificação , Proteus mirabilis/genética , Proteus mirabilis/metabolismo , Coelhos , Sorotipagem , Treonina/genética , Treonina/metabolismo
20.
Carbohydr Res ; 340(9): 1612-7, 2005 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-15890320

RESUMO

An O-polysaccharide was isolated by mild acid hydrolysis from the lipopolysaccharide of Proteus mirabilis O40 and studied by NMR spectroscopy, including 2D 1H, 1H COSY, TOCSY, ROESY, and 1H, 13C HMQC experiments, along with chemical methods. The polysaccharide was found to contain an ether of GlcNAc with lactic acid and glycerol phosphate in the main chain and to have the following structure: --> 3)-beta-D-GlcpNAc4(R-Lac)-(1 --> 3)-alpha-D-Galp-(1 --> 3)-D-Gro-1-P-(O --> 3)-beta-D-GlcpNAc-(1 --> where D-GlcpNAc4(R-Lac) stands for 2-acetamido-4-O-[(R)-1-carboxyethyl]-2-deoxy-D-glucose. This structure is unique among the known structures of the Proteus O-polysaccharides, which is in agreement with the classification of the strain studied into a separate O-serogroup. A serological relatedness of P. mirabilis O40 with some other Proteus strains was revealed and discussed in view of the O-polysaccharide structures.


Assuntos
Antígenos O/química , Polissacarídeos Bacterianos/química , Proteus mirabilis/classificação , Sequência de Carboidratos , Ácido Láctico/análise , Dados de Sequência Molecular , Monossacarídeos/análise , Antígenos O/imunologia , Antígenos O/isolamento & purificação , Éteres Fosfolipídicos/análise , Polissacarídeos Bacterianos/imunologia , Polissacarídeos Bacterianos/isolamento & purificação , Proteus mirabilis/química , Proteus mirabilis/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA