Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Arch Toxicol ; 96(12): 3163-3174, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36175686

RESUMO

With more than 80 cytochrome P450 (CYP) encoding genes found in the nematode Caenorhabditis elegans (C. elegans), the cyp35 genes are one of the important genes involved in many biological processes such as fatty acid synthesis and storage, xenobiotic stress response, dauer and eggshell formation, and xenobiotic metabolism. The C. elegans CYP35 subfamily consisted of A, B, C, and D, which have the closest homolog to human CYP2 family. C. elegans homologs could answer part of the hunt for human disease genes. This review aims to provide an overview of CYP35 in C. elegans and their human homologs, to explore the roles of CYP35 in various C. elegans biological processes, and how the genes of cyp35 upregulation or downregulation are influenced by biological processes, upon exposure to xenobiotics or changes in diet and environment. The C. elegans CYP35 gene expression could be upregulated by heavy metals, pesticides, anti-parasitic and anti-chemotherapeutic agents, polycyclic aromatic hydrocarbons (PAHs), nanoparticles, drugs, and organic chemical compounds. Among the cyp35 genes, cyp-35A2 is involved in most of the C. elegans biological processes regulation. Further venture of cyp35 genes, the closest homolog of CYP2 which is the largest family of human CYPs, may have the power to locate cyps gene targets, discovery of novel therapeutic strategies, and possibly a successful medical regime to combat obesity, cancers, and cyps gene-related diseases.


Assuntos
Fenômenos Biológicos , Proteínas de Caenorhabditis elegans , Praguicidas , Hidrocarbonetos Policíclicos Aromáticos , Animais , Humanos , Caenorhabditis elegans/genética , Xenobióticos/toxicidade , Proteínas de Caenorhabditis elegans/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Família 2 do Citocromo P450 , Ácidos Graxos
2.
Phytother Res ; 36(7): 2952-2963, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35537691

RESUMO

This study investigated the vasorelaxant effects of schwarzinicine A, an alkaloid recently reported from Ficus schwarzii Koord. Regulation of calcium homeostasis in vascular smooth muscle cells (VSMC) is viewed as one of the main mechanisms for controlling blood pressure. L-type voltage-gated calcium channel (VGCC) blockers are commonly used for controlling hypertension. Recently, the transient receptor potential canonical (TRPC) channels were found in blood vessels of different animal species with evidence of their roles in the regulation of vascular contractility. In this study, we studied the mechanism of actions of schwarzinicine A focusing on its regulation of L-type VGCC and TRPC channels. Schwarzinicine A exhibited the highest vasorelaxant effect (123.1%) compared to other calcium channel blockers. It also overtly attenuated calcium-induced contractions of the rat isolated aortae in a calcium-free environment showing its mechanism to inhibit calcium influx. Fluorometric intracellular calcium recordings confirmed its inhibition of hTRPC3-, hTRPC4-, hTRPC5- and hTRPC6-mediated calcium influx into HEK cells with IC50 values of 3, 17, 19 and 7 µM, respectively. The evidence gathered in this study suggests that schwarzinicine A blocks multiple TRPC channels and L-type VGCC to exert a significant vascular relaxation response.


Assuntos
Canais de Potencial de Receptor Transitório , Vasodilatação , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/farmacologia , Ratos , Canais de Potencial de Receptor Transitório/farmacologia , Vasodilatadores/farmacologia
3.
Proc Natl Acad Sci U S A ; 110(37): 15067-72, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23980181

RESUMO

Burkholderia pseudomallei is a Gram-negative soil bacterium that infects both humans and animals. Although cell culture studies have revealed significant insights into factors contributing to virulence and host defense, the interactions between this pathogen and its intact host remain to be elucidated. To gain insights into the host defense responses to B. pseudomallei infection within an intact host, we analyzed the genome-wide transcriptome of infected Caenorhabditis elegans and identified ∼6% of the nematode genes that were significantly altered over a 12-h course of infection. An unexpected feature of the transcriptional response to B. pseudomallei was a progressive increase in the proportion of down-regulated genes, of which ELT-2 transcriptional targets were significantly enriched. ELT-2 is an intestinal GATA transcription factor with a conserved role in immune responses. We demonstrate that B. pseudomallei down-regulation of ELT-2 targets is associated with degradation of ELT-2 protein by the host ubiquitin-proteasome system. Degradation of ELT-2 requires the B. pseudomallei type III secretion system. Together, our studies using an intact host provide evidence for pathogen-mediated host immune suppression through the destruction of a host transcription factor.


Assuntos
Burkholderia pseudomallei/patogenicidade , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/microbiologia , Fatores de Transcrição GATA/metabolismo , Animais , Animais Geneticamente Modificados , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/imunologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Regulação para Baixo , Fatores de Transcrição GATA/genética , Interações Hospedeiro-Patógeno/imunologia , Processamento Pós-Transcricional do RNA , RNA de Helmintos/genética , RNA de Helmintos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Virulência/imunologia
4.
BMC Genomics ; 16: 471, 2015 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-26092034

RESUMO

BACKGROUND: Chronic bacterial infections occur as a result of the infecting pathogen's ability to live within a biofilm, hence escaping the detrimental effects of antibiotics and the immune defense system. Burkholderia pseudomallei, a gram-negative facultative pathogen, is distinctive in its ability to survive within phagocytic and non-phagocytic cells, to persist in vivo for many years and subsequently leading to relapse as well as the development of chronic disease. The capacity to persist has been attributed to the pathogen's ability to form biofilm. However, the underlying biology of B. pseudomallei biofilm development remains unresolved. RESULTS: We utilised RNA-Sequencing to identify genes that contribute to B. pseudomallei biofilm phenotype. Transcriptome analysis of a high and low biofilm producer identified 563 differentially regulated genes, implying that expression of ~9.5% of the total B. pseudomallei gene content was altered during biofilm formation. Genes involved in surface-associated motility, surface composition and cell wall biogenesis were over-expressed and probably play a role in the initial attachment of biofilms. Up-regulation of genes related to two component signal transduction systems and a denitrification enzyme pathway suggest that the B. pseudomallei high biofilm producer is able to sense the surrounding environmental conditions and regulate the production of extracellular polymeric substance matrix, a hallmark of microbial biofilm formation. CONCLUSIONS: The transcriptome profile described here provides the first comprehensive view of genes that contribute to the biofilm phenotype in B. pseudomallei.


Assuntos
Biofilmes/crescimento & desenvolvimento , Burkholderia pseudomallei/genética , Transcrição Gênica/genética , Virulência/genética , Animais , Parede Celular/genética , Feminino , Perfilação da Expressão Gênica/métodos , Melioidose/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Regulação para Cima/genética
5.
BMC Complement Altern Med ; 14: 4, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24393217

RESUMO

BACKGROUND: The limited antibiotic options for effective control of methicillin-resistant Staphylococcus aureus infections has led to calls for new therapeutic approaches to combat this human pathogen. An alternative approach to control MRSA is through the use of anti-infective agents that selectively disrupt virulence-mediated pathways without affecting microbial cell viability or by modulating the host natural immune defenses to combat the pathogen. METHODS: We established a C. elegans - S. aureus liquid-based assay to screen for potential anti-infectives against S. aureus. The assay was utilized to screen 37 natural extracts and 29 synthetic compounds for the ability to extend the lifespan of infected nematodes. Disc diffusion and MIC microdilution tests were used to evaluate the anti-microbial properties of these natural extracts and synthetic compounds whilst in vivo bacterial CFU within the C. elegans gut were also enumerated. RESULTS: We screened a total of 37 natural extracts and 29 synthetic compounds for anti-infective properties. The screen successfully revealed 14 natural extracts from six plants (Nypa fruticans, Swietenia macrophylla, Curcuma longa, Eurycoma longifolia, Orthosiphon stamineus and Silybum eburneum) and one marine sample (Faunus ater) that improved the survival of S. aureus-infected worms by at least 2.8-fold as well as 14 synthetic compounds that prolonged the survival of S. aureus-infected nematodes by 4-fold or greater. An anti-microbial screen of all positive hits demonstrated that 8/28 hits had no effect on S. aureus growth. Of these 8 candidates, 5 of them also protected the worms from MRSA infection. We also noted that worms exposed to N. fruticans root and O. stamineus leaf extracts showed reduced intestinal colonization by live S. aureus. This suggests that these extracts could possibly activate host immunity to eliminate the bacteria or interfere with factor/s that prevents pathogen accumulation. CONCLUSION: We have successfully demonstrated the utility of this liquid-based screen to identify anti-infective substances that prolong S. aureus-infected host survival without affecting bacterial cell viability.


Assuntos
Antibacterianos/farmacologia , Caenorhabditis elegans/microbiologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Extratos Vegetais/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/uso terapêutico , Carga Bacteriana/efeitos dos fármacos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Análise de Sobrevida , Virulência/efeitos dos fármacos
6.
Microb Genom ; 9(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37018040

RESUMO

Burkholderia pseudomallei, a Gram-negative pathogen, is the causative agent of melioidosis in humans. This bacterium can be isolated from the soil, stagnant and salt-water bodies, and human and animal clinical specimens. While extensive studies have contributed to our understanding of B. pseudomallei pathogenesis, little is known about how a harmless soil bacterium adapts when it shifts to a human host and exhibits its virulence. The bacterium's large genome encodes an array of factors that support the pathogen's ability to survive under stressful conditions, including the host's internal milieu. In this study, we performed comparative transcriptome analysis of B. pseudomallei cultured in human plasma versus soil extract media to provide insights into B. pseudomallei gene expression that governs bacterial adaptation and infectivity in the host. A total of 455 genes were differentially regulated; genes upregulated in B. pseudomallei grown in human plasma are involved in energy metabolism and cellular processes, whilst the downregulated genes mostly include fatty acid and phospholipid metabolism, amino acid biosynthesis and regulatory function proteins. Further analysis identified a significant upregulation of biofilm-related genes in plasma, which was validated using the biofilm-forming assay and scanning electron microscopy. In addition, genes encoding known virulence factors such as capsular polysaccharide and flagella were also overexpressed, suggesting an overall enhancement of B. pseudomallei virulence potential when present in human plasma. This ex vivo gene expression profile provides comprehensive information on B. pseudomallei's adaptation when shifted from the environment to the host. The induction of biofilm formation under host conditions may explain the difficulty in treating septic melioidosis.


Assuntos
Burkholderia pseudomallei , Melioidose , Animais , Humanos , Burkholderia pseudomallei/genética , Melioidose/microbiologia , Adaptação Fisiológica , Virulência , Fatores de Virulência
7.
Polymers (Basel) ; 15(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37836029

RESUMO

Over the last decade, there has been an increasing interest in the use of bioceramics for biomedical purposes. Bioceramics, specifically those made of calcium phosphate, are commonly used in dental and orthopaedic applications. In this context, hydroxyapatite (HA) is considered a viable option for hard tissue engineering applications given its compositional similarity to bioapatite. However, owing to their poor mechanobiology and biodegradability, traditional HA-based composites have limited utilisation possibilities in bone, cartilage and dental applications. Therefore, the efficiency of nano HA (nHA) has been explored to address these limitations. nHA has shown excellent remineralising effects on initial enamel lesions and is widely used as an additive for improving existing dental materials. Furthermore, three-dimensional printing (3DP) or fused deposition modelling that can be used for creating dental and hard tissue scaffolds tailored to each patient's specific anatomy has attracted considerable interest. However, the materials used for producing hard tissue with 3DP are still limited. Therefore, the current study aimed to develop a hybrid polymer nanocomposite composed of nHA, nanoclay (NC) and polylactic acid (PLA) that was suitable for 3DP. The nHA polymer nanocomposites were extruded into filaments and their physiochemical properties were evaluated. The results showed that the addition of nHA and NC to the PLA matrix significantly increased the water absorption and contact angle. In addition, the hardness increased from 1.04 to 1.25 times with the incorporation of nHA. In sum, the nHA-NC-reinforced PLA could be used as 3DP filaments to generate bone and dental scaffolds, and further studies are needed on the biocompatibility of this material.

8.
Polymers (Basel) ; 14(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35160475

RESUMO

Alginate (Alg) hydrogels are commonly used as bioinks in 3D bioprinting. However, one of the significant drawbacks of using Alg hydrogels is their unstable mechanical properties. In this study, a novel hydrogel-based ink composed of Alg reinforced with functionalised boron nitride nanotubes (f-BNNTs) was developed and systematic quantitative characterisation was conducted to validate its printability, physiochemical properties and biocompatibility. The printability, contact angle and mechanical test results indicated good structural stability of the scaffolds. The thermal stability of the scaffolds increased with the incorporation of f-BNNTs into Alg. Human embryonic kidney cells (HEK 293T) were seeded on the scaffolds and the cell viability was recorded for 24, 48 and 72 h. Quantitative studies showed a slight effect on toxicity with a higher concentration of BNNTs in scaffolds. The results suggest that the 3D printable f-BNNTs reinforced Alg could be used as bioink for tissue engineering applications with further studies on biocompatibility.

9.
Biomater Adv ; 141: 213103, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36084352

RESUMO

The rapid evolution of 3D bioprinting technique, very few biomaterials have been studied and utilised as ink solutions to produce structures. In this work, a polymeric nanocomposite hydrogel-based ink solution was developed using boron nitride nanotubes (BNNTs) reinforced gelatin for 3D bioprinting of scaffolds. The ink solutions and printed scaffolds were characterised for their printability, mechanical, thermal, water uptake, and biological properties (cell viability and inflammation). The viscoelastic behaviour of the scaffolds indicated the increase in storage modulus with an increase in BNNTs composition. Additionally, the compressive strength of the scaffolds increased from 9.43 ± 1.3 kPa to 30.09 ± 1.5 kPa with the addition of BNNTs. Similarly, the thermal stability of the scaffolds enhanced with an increase in BNNTs composition. Furthermore, the scaffolds with a higher concentration of BNNTs displayed resilience in cell culture media at 37 °C for up to 14 days compared with pure gelatin scaffolds. The cell viability results showed a decreased viability rate with an increased concentration of BNNTs scaffolds. However, BNNTs incubated with cells did not display cytokine inflammation. Therefore, this work provides a potential hydrogel-based ink solution for 3D bioprinting of biomimetic tissue constructs with adequate structural stability for a wide range of tissue engineering and regenerative medicine applications.


Assuntos
Bioimpressão , Nanotubos , Materiais Biocompatíveis/química , Bioimpressão/métodos , Compostos de Boro , Citocinas , Gelatina/química , Humanos , Hidrogéis/química , Inflamação , Tinta , Nanogéis , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Água
10.
Gels ; 8(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36286104

RESUMO

Three-dimensional (3D) bioprinting, an innovative technology, has gained the attention of researchers as a promising technique for the redevelopment of complex tissue or organ structures. Despite significant advancements, a major challenge in 3D bioprinting is the limited number of suitable bioinks that fulfil the physiochemical requirements to produce complicated structures. Therefore, there is a demand for the production of bioinks for 3D bioprinting techniques. In this short communication, THP-1 cells encapsulated in boron nitride nanotubes (BNNTs) reinforced gelatin and alginate bioink was prepared. The study investigated the impact on the cells during printing using a fluorescence cell image. The results showed that the pure polymer bioinks demonstrated poor printability properties with the incorporation of cells. However, BNNT-combined bioink showed a significant increase in structural integrity even after the incorporation of cells. Furthermore, the scaffold structure was successfully printed with the cells incorporated bioink, and a considerable number of live cells were observed. With further studies, BNNTs as a promising nanomaterial for formulating bioink encapsulated with cells can be understood fully.

11.
Sci Rep ; 8(1): 2758, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426873

RESUMO

Staphylococcus aureus is a major cause of nosocomial infections and secretes a diverse spectrum of virulence determinants as well as forms biofilm. The emergence of antibiotic-resistant S. aureus highlights the need for alternative forms of therapeutics other than conventional antibiotics. One route to meet this need is screening small molecule derivatives for potential anti-infective activity. Using a previously optimized C. elegans - S. aureus small molecule screen, we identified a benzimidazole derivative, UM-C162, which rescued nematodes from a S. aureus infection. UM-C162 prevented the formation of biofilm in a dose-dependent manner without interfering with bacterial viability. To examine the effect of UM-C162 on the expression of S. aureus virulence genes, a genome-wide transcriptome analysis was performed on UM-C162-treated pathogen. Our data indicated that the genes associated with biofilm formation, particularly those involved in bacterial attachment, were suppressed in UM-C162-treated bacteria. Additionally, a set of genes encoding vital S. aureus virulence factors were also down-regulated in the presence of UM-C162. Further biochemical analysis validated that UM-C162-mediated disruption of S. aureus hemolysins, proteases and clumping factors production. Collectively, our findings propose that UM-C162 is a promising compound that can be further developed as an anti-virulence agent to control S. aureus infections.


Assuntos
Antibacterianos/farmacologia , Benzimidazóis/farmacologia , Biofilmes/efeitos dos fármacos , Infecção Hospitalar , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Caenorhabditis elegans/microbiologia , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/microbiologia , Perfilação da Expressão Gênica , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Virulência/efeitos dos fármacos , Virulência/genética , Fatores de Virulência/genética
12.
Toxins (Basel) ; 8(3)2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26999200

RESUMO

Staphylococcus aureus is an opportunistic pathogen and the leading cause of a wide range of severe clinical infections. The range of diseases reflects the diversity of virulence factors produced by this pathogen. To establish an infection in the host, S. aureus expresses an inclusive set of virulence factors such as toxins, enzymes, adhesins, and other surface proteins that allow the pathogen to survive under extreme conditions and are essential for the bacteria's ability to spread through tissues. Expression and secretion of this array of toxins and enzymes are tightly controlled by a number of regulatory systems. S. aureus is also notorious for its ability to resist the arsenal of currently available antibiotics and dissemination of various multidrug-resistant S. aureus clones limits therapeutic options for a S. aureus infection. Recently, the development of anti-virulence therapeutics that neutralize S. aureus toxins or block the pathways that regulate toxin production has shown potential in thwarting the bacteria's acquisition of antibiotic resistance. In this review, we provide insights into the regulation of S. aureus toxin production and potential anti-virulence strategies that target S. aureus toxins.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Toxinas Biológicas/metabolismo , Fatores de Virulência/metabolismo , Animais , Antibacterianos/química , Caenorhabditis elegans/microbiologia , Humanos , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Virulência/efeitos dos fármacos
13.
Front Microbiol ; 7: 1956, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27994583

RESUMO

The spread of antibiotic resistance amongst bacterial pathogens has led to an urgent need for new antimicrobial compounds with novel modes of action that minimize the potential for drug resistance. To date, the development of new antimicrobial drugs is still lagging far behind the rising demand, partly owing to the absence of an effective screening platform. Over the last decade, the nematode Caenorhabditis elegans has been incorporated as a whole animal screening platform for antimicrobials. This development is taking advantage of the vast knowledge on worm physiology and how it interacts with bacterial and fungal pathogens. In addition to allowing for in vivo selection of compounds with promising anti-microbial properties, the whole animal C. elegans screening system has also permitted the discovery of novel compounds targeting infection processes that only manifest during the course of pathogen infection of the host. Another advantage of using C. elegans in the search for new antimicrobials is that the worm itself is a source of potential antimicrobial effectors which constitute part of its immune defense response to thwart infections. This has led to the evaluation of effector molecules, particularly antimicrobial proteins and peptides (APPs), as candidates for further development as therapeutic agents. In this review, we provide an overview on use of the C. elegans model for identification of novel anti-infectives. We highlight some highly potential lead compounds obtained from C. elegans-based screens, particularly those that target bacterial virulence or host defense to eradicate infections, a mechanism distinct from the action of conventional antibiotics. We also review the prospect of using C. elegans APPs as an antimicrobial strategy to treat infections.

14.
Sci Rep ; 6: 27475, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27273550

RESUMO

Toxins are believed to play a crucial role in Burkholderia pseudomallei pathogenicity, however to date, only a few have been identified. The discovery of additional toxic molecules is limited by the lack of a sensitive indicator of B. pseudomallei toxicity. Previously, from a whole genome transcriptome analysis of B. pseudomallei-infected Caenorhabditis elegans, we noted significant overexpression of a number of worm genes encoding detoxification enzymes, indicating the host's attempt to clear bacterial toxic molecules. One of these genes, ugt-29, a family member of UDP-glucuronosyltransferases, was the most robustly induced phase II detoxification gene. In this study, we show that strong induction of ugt-29 is restricted to infections by the most virulent species among the pathogens tested. We also noted that ugt-29 is activated upon disruption of host protein synthesis. Hence, we propose that UGT-29 could be a promising biosensor to detect B. pseudomallei toxins that compromise host protein synthesis. The identification of bactobolin, a polyketide-peptide hybrid molecule, as a toxic molecule of B. pseudomallei further verifies the utilization of this surveillance system to search for bacterial toxins. Hence, a ugt-29 based reporter should be useful in screening for other molecules that inhibit host protein synthesis.


Assuntos
Toxinas Bacterianas/toxicidade , Técnicas Biossensoriais , Burkholderia pseudomallei/patogenicidade , Caenorhabditis elegans/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/toxicidade , Animais
15.
Biol Open ; 3(7): 644-55, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24972867

RESUMO

Amidst growing concerns over the spread of antibiotic-resistant Staphylococcus aureus strains, the identification of alternative therapeutic molecules has become paramount. Previously, we utilized a Caenorhabditis elegans-S. aureus screening platform to identify potential anti-infective agents from a collection of natural extracts and synthetic compounds. One of the hits obtained from the screen was the aqueous extract of Orthosiphon stamineus leaves (UE-12) that enhanced the survival of infected nematodes without interfering with bacterial growth. In this study, we used a fluorescent transgenic reporter strain and observed that the repressed expression of the lys-7 defense gene in infected nematodes was restored in the presence of UE-12. Analysis of a selected panel of PMK-1 and DAF-16-regulated transcripts and loss-of-function mutants in these pathways indicates that the protective role of UE-12 is mediated via the p38 MAP kinase and insulin-like signaling pathways. Further analysis of a panel of known bioactive compounds of UE-12 proposed eupatorin (C18H16O7) as the possible candidate active molecule contributing to the anti-infective property of UE-12. Taken together, these findings strongly suggest that the O. stamineus leaf extract is a promising anti-infective agent that confers an advantage in survival against S. aureus infection by modulating the immune response of the infected host.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA