Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 31(Pt 2): 378-384, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241124

RESUMO

An integrated computer software system for macromolecular crystallography (MX) data collection at the BL02U1 and BL10U2 beamlines of the Shanghai Synchrotron Radiation Facility is described. The system, Finback, implements a set of features designed for the automated MX beamlines, and is marked with a user-friendly web-based graphical user interface (GUI) for interactive data collection. The Finback client GUI can run on modern browsers and has been developed using several modern web technologies including WebSocket, WebGL, WebWorker and WebAssembly. Finback supports multiple concurrent sessions, so on-site and remote users can access the beamline simultaneously. Finback also cooperates with the deployed experimental data and information management system, the relevant experimental parameters and results are automatically deposited to a database.

2.
Cell Prolif ; 57(8): e13643, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38572799

RESUMO

DNA nanostructures, known for their programmability, ease of modification, and favourable biocompatibility, have gained widespread application in the biomedical field. Among them, Tetrahedral DNA Origami (TDOs), as a novel DNA nanostructure, possesses well-defined structures, multiple modification sites, and large cavities, making it a promising drug carrier. However, current understanding of TDOs' interactions with biological systems, particularly with target cells and organs, remains unexplored, limiting its further applications in biomedicine. In this work, we prepared TDOs with an average particle size of 40 nm and labelled them with Cy5 fluorescent molecules. Following intravenous injection in mice, the uptake of TDOs by different types of liver and kidney cells was observed. Results indicated that TDOs accumulate in renal tubules and are metabolized by Kupffer cells, epithelial cells, and hepatocytes in the liver. Additionally, in a tumour-bearing mouse model, TDOs passively targeted tumour tissues and exhibited excellent tumour penetration and retention after rapid metabolism in hepatocytes. Our findings provide crucial insights for the development of TDO-based drug delivery systems.


Assuntos
DNA , Rim , Fígado , Nanoestruturas , Animais , Camundongos , DNA/metabolismo , Fígado/metabolismo , Humanos , Rim/metabolismo , Nanoestruturas/química , Hepatócitos/metabolismo , Carbocianinas/química , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral
3.
JACS Au ; 4(3): 893-902, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38559738

RESUMO

Synchrotron-based X-ray microscopy (XRM) has garnered widespread attention from researchers due to its high spatial resolution and excellent energy (element) resolution. Existing molecular probes suitable for XRM include immune probes and genetic labeling probes, enabling the precise imaging of various biological targets within cells. However, immune labeling techniques are prone to cross-interference between antigens and antibodies. Genetic labeling technologies have limited systems that allow express markers independently, and moreover, genetically encoded labels based on catalytic polymerization lack a fixed morphology. When applied to cell imaging, this can result in reduced localization accuracy due to the diffusion of labels within the cells. Therefore, both techniques face challenges in simultaneously labeling multiple biotargets within cells and achieving high-precision imaging. In this work, we applied the click reaction and developed a third category of imaging probes suitable for XRM, termed clickable X-ray nanoprobes (Click-XRN). Click-XRN consists of two components: an X-ray-sensitive multicolor imaging module and a particle-size-controllable morphology module. Efficient identification of intra- and extracellular biotargets is achieved through click reactions between the probe and biomolecules. Click-XRN possesses a controllable particle size, and its loading of various metal ions provides distinctive signals for imaging under XRM. Based on this, we optimized the imaging energy of Click-XRN with different particle sizes, enabling single-color and two-color imaging of the cell membrane, cell nucleus, and mitochondria with nanoscale spatial nanometers. Our work provides a potent molecular tool for investigating cellular activities through XRM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA