Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Chem Res Toxicol ; 37(1): 42-56, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091573

RESUMO

The chemokine receptor CXCR3 is functionally pleiotropic, not only recruiting immune cells to the inflamed liver but also mediating the pathological process of cholestatic liver injury (CLI). However, the mechanism of its involvement in the CLI remains unclear. Both alpha-naphthylisothiocyanate (ANIT) and triptolide are hepatotoxicants that induce CLI by bile acid (BA) dysregulation, inflammation, and endoplasmic reticulum (ER)/oxidative stress. Through molecular docking, CXCR3 is a potential target of ANIT and triptolide. Therefore, this study aimed to investigate the role of CXCR3 in ANIT- and triptolide-induced CLI and to explore the underlying mechanisms. Wild-type mice and CXCR3-deficient mice were administered with ANIT or triptolide to compare CLI, BA profile, hepatic recruitment of IFN-γ/IL-4/IL-17+CD4+T cells, IFN-γ/IL-4/IL-17+iNKT cells and IFN-γ/IL-4+NK cells, and the expression of ER/oxidative stress pathway. The results showed that CXCR3 deficiency ameliorated ANIT- and triptolide-induced CLI. CXCR3 deficiency alleviated ANIT-induced dysregulated BA metabolism, which decreased the recruitment of IFN-γ+NK cells and IL-4+NK cells to the liver and inhibited ER stress. After triptolide administration, CXCR3 deficiency ameliorated dysregulation of BA metabolism, which reduced the migration of IL-4+iNKT cells and IL-17+iNKT cells and reduced oxidative stress through inhibition of Egr1 expression and AKT phosphorylation. Our findings suggest a detrimental role of CXCR3 in ANIT- and triptolide-induced CLI, providing a promising therapeutic target and introducing novel mechanisms for understanding cholestatic liver diseases.


Assuntos
1-Naftilisotiocianato , Colestase , Diterpenos , Fenantrenos , Animais , Camundongos , 1-Naftilisotiocianato/toxicidade , 1-Naftilisotiocianato/metabolismo , Interleucina-17/toxicidade , Interleucina-17/metabolismo , Interleucina-17/uso terapêutico , Interleucina-4/toxicidade , Interleucina-4/metabolismo , Interleucina-4/uso terapêutico , Simulação de Acoplamento Molecular , Fígado/metabolismo , Colestase/induzido quimicamente , Ácidos e Sais Biliares , Compostos de Epóxi
2.
Arch Toxicol ; 97(2): 561-580, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36329302

RESUMO

IL-17 is closely associated with inflammation in intrahepatic cholestasis (IHC). Targeting IL-17 ameliorates IHC in mice. Invariant natural killer T (iNKT) cells are predominantly enriched in the liver and they mediate drug-induced liver injury through their secreted cytokines. However, whether iNKT17 cells are involved in ethinylestradiol (EE)-induced IHC remains unclear. In the present study, the administration of EE (10 mg/kg in vivo and 6.25 µM in vitro) promoted the activation and expansion of iNKT17 cells, which contributed to a novel hepatic iNKT17/Treg imbalance. iNKT cell-deficient Jα18-/- mice and the RORγt inhibitor digoxin (20 µg) alleviated EE-induced cholestatic hepatotoxicity and downregulated the IL-17 signalling pathway. In contrast, the co-administration of EE with recombinant IL-17 (1 µg) to Jα18-/- mice induced cholestatic hepatotoxicity and increased the infiltration of hepatic neutrophils and monocytes. Importantly, the administration of IL-17-/- iNKT cells (3.5 × 105) to Jα18-/- mice resulted in the attenuation of hepatotoxicity and the recruitment of fewer hepatic neutrophils and monocytes than the adoptive transfer of wild-type iNKT cells. These results indicated that iNKT17 cells could exert pathogenic effects. The recruitment and activation of iNKT17 cells could be attributed to the high level of CXCR3 expression on their surface. CXCL10 deficiency ameliorated EE-induced cholestatic liver damage, reduced hepatic CXCR3+ iNKT cells and inhibited RORγt expression. These findings suggest that iNKT17 cells play a key role in EE-induced cholestatic liver injury via CXCR3-mediated recruitment and activation. Our study provides new insights and therapeutic targets for cholestatic diseases.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Colestase , Células T Matadoras Naturais , Camundongos , Animais , Interleucina-17 , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Etinilestradiol/toxicidade , Colestase/induzido quimicamente , Colestase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Células T Matadoras Naturais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Phys Chem Chem Phys ; 24(47): 29141-29150, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36444744

RESUMO

Electrocatalytic water splitting suffers from sluggish kinetics towards the hydrogen evolution reaction (HER). Balancing the adsorption/desorption ability towards H* and OH* is considered to be an efficient way to enhance the HER efficiency, but it is too hard at one activity site. In this work, the HER activity of the single 3d transition metal atom-anchored BC2N monolayer (M@BC2N, M = Fe, Co, and Ni) was investigated by a density functional theory approach. Our calculation suggests that an efficient dual-active site is formed on M@BC2N towards the HER, i.e., the metal center M as the OH* active site and its adjacent C atoms as the H* active site. The combination of single M atoms with the BC2N monolayer can effectively tune the electronic structure of dual active sites to optimize the adsorption of H* and OH*, resulting in a HER activity sequence of Fe@BC2N < Co@BC2N < Ni@BC2N. Notably, the HER exchange current density of Ni@BC2N reaches up to 0.53 mA cm-2, which is close to the value for commercial Pt/C, suggesting its huge potential in the HER.

4.
Sensors (Basel) ; 22(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36015740

RESUMO

The efficient and accurate prediction of urban travel demand, which is a hot topic in intelligent transportation research, is challenging due to its complicated spatial-temporal dependencies, dynamic nature, and uneven distribution. Most existing forecasting methods merely considered the static spatial dependencies while ignoring the influence of the diversity of dynamic demand patterns and/or uneven distribution. In this paper, we propose a traffic demand forecasting framework of a hybrid dynamic graph convolutional network (HDGCN) model to deeply capture the characteristics of urban travel demand and improve prediction accuracy. In HDGCN, traffic flow similarity graphs are designed according to the dynamic nature of travel demand, and a dynamic graph sequence is generated according to time sequence. Then, the dynamic graph convolution module and the standard graph convolution module are introduced to extract the spatial features from dynamic graphs and static graphs, respectively. Finally, the spatial features of the two components are fused and combined with the gated recurrent unit (GRU) to learn the temporal features. The efficiency and accuracy of the HDGCN model in predicting urban taxi travel demand are verified by using the taxi data from Manhattan, New York City. The modeling and comparison results demonstrate that the HDGCN model can achieve stable and effective prediction for taxi travel demand compared with the state-of-the-art baseline models. The proposed model could be used for the real-time, accurate, and efficient travel demand prediction of urban taxi and other urban transportation systems.


Assuntos
Automóveis , Meios de Transporte , Previsões , Análise Espacial , Meios de Transporte/métodos , Viagem
5.
World J Gastroenterol ; 28(26): 3150-3163, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-36051344

RESUMO

BACKGROUND: As the main component of oral contraceptives (OCs), ethinylestradiol (EE) has been widely applied as a model drug to induce murine intrahepatic cholestasis. The clinical counterpart of EE-induced cholestasis includes women who are taking OCs, sex hormone replacement therapy, and susceptible pregnant women. Taking intrahepatic cholestasis of pregnancy (ICP) as an example, ICP consumes the medical system due to its high-risk fetal burden and the impotency of ursodeoxycholic acid in reducing adverse perinatal outcomes. AIM: To explore the mechanisms and therapeutic strategies of EE-induced cholestasis based on the liver immune microenvironment. METHODS: Male C57BL/6J mice or invariant natural killer T (iNKT) cell deficiency (Jα18-/- mice) were administered with EE (10 mg/kg, subcutaneous) for 14 d. RESULTS: Both Th1 and Th2 cytokines produced by NKT cells increased in the liver skewing toward a Th1 bias. The expression of the chemokine/chemokine receptor Cxcr6/Cxcl16, toll-like receptors, Ras/Rad, and PI3K/Bad signaling was upregulated after EE administration. EE also influenced bile acid synthase Cyp7a1, Cyp8b1, and tight junctions ZO-1 and Occludin, which might be associated with EE-induced cholestasis. iNKT cell deficiency (Jα18-/- mice) robustly alleviated cholestatic liver damage and lowered the expression of the abovementioned signaling pathways. CONCLUSION: Hepatic NKT cells play a pathogenic role in EE-induced intrahepatic cholestasis. Our research improves the understanding of intrahepatic cholestasis by revealing the hepatic immune microenvironment and also provides a potential clinical treatment by regulating iNKT cells.


Assuntos
Colestase Intra-Hepática , Colestase , Células T Matadoras Naturais , Animais , Colestase/patologia , Colestase Intra-Hepática/induzido quimicamente , Etinilestradiol/efeitos adversos , Etinilestradiol/metabolismo , Feminino , Humanos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
6.
Adv Sci (Weinh) ; 9(36): e2204949, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36285692

RESUMO

The development of low-cost, high-efficiency, and stable electrocatalysts for hydrogen evolution reaction (HER) under alkaline conditions is a key challenge in water electrolysis. Here, an interfacial engineering strategy that is capable of simultaneously regulating nanoscale structure, electronic structure, and interfacial structure of Mo2 N quantum dots decorated on conductive N-doped graphene via codoping single-atom Al and O (denoted as AlO@Mo2 N-NrGO) is reported. The conversion of Anderson polyoxometalates anion cluster ([AlMo6 O24 H6 ]3- , denoted as AlMo6) to Mo2 N quantum dots not only result in the generation of more exposed active sites but also in situ codoping atomically dispersed Al and O, that can fine-tune the electronic structure of Mo2 N. It is also identified that the surface reconstruction of AlOH hydrates in AlO@Mo2 N quantum dots plays an essential role in enhancing hydrophilicity and lowering the energy barriers for water dissociation and hydrogen desorption, resulting in a remarkable alkaline HER performance, even better than the commercial 20% Pt/C. Moreover, the strong interfacial interaction (MoN bonds) between AlO@Mo2 N and N-doped graphene can significantly improve electron transfer efficiency and interfacial stability. As a result, outstanding stability over 300 h at a current density higher than 100 mA cm-2 is achieved, demonstrating great potential for the practical application of this catalyst.

7.
Nanomaterials (Basel) ; 10(2)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093235

RESUMO

The traditional theta modulator encodes input information by superimposing Ronchi sub-gratings, which is extremely easy to cause spatial channel overlap that results in bands mixing. In this case, we present an all-dielectric theta modulation meta-surface with a new encoding method, which separates red, green, blue, and achromatic spatial channels on the focal plane. The meta-surface ensures that the positions of focal points are relatively consistent while focusing energy into the sub-wavelength regions. Our study offers a way to facilitate device miniaturization and system integration, which may have an important application in compact multispectral photography only with one detector.

8.
Exp Ther Med ; 6(2): 347-354, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24137187

RESUMO

Thermal treatment or hyperthermia has received considerable attention in recent years due to its high efficiency, safety and relatively few side-effects. In this study, we investigated whether it was possible to utilize targeted thermal or instent thermal treatments for the treatment of restenosis following percutaneous transluminal coronary angioplasty (PTCA) through magnetic stent hyperthermia (MSH). A 316L stainless steel stent and rabbit vascular smooth muscle cells (VSMCs) were used in the present study, in which the inductive heating characteristics of the stent under alternative magnetic field (AMF) exposure, as well as the effect of MSH on the proliferation, apoptosis, cell cycle and proliferating cell nuclear antigen (PCNA) expression of the rabbit VSMCs, were evaluated. The results demonstrated that 316L stainless steel coronary stents possess ideal inductive heating characteristics under 300 kHz AMF exposure. The heating properties were shown to be affected by the field intensity of the AMF, as well as the orientation the stent axis. MSH had a significant effect on the proliferation and apoptosis of VSMCs, and the effect was temperature-dependent. While a mild temperature of 43°C demonstrated negligible effects on the growth of VSMCs, MSH treatment above 47°C effectively inhibited the VSMC proliferation and induced apoptosis. Furthermore, a 47°C treatment exhibited a significant and long-term inhibitory effect on VSMC migration. The results strongly suggested that MSH may be potentially applied in the clinic as an alternative approach for the prevention and treatment of restenosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA