Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

País/Região como assunto
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 249, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448842

RESUMO

BACKGROUND: Iron plays a crucial role in the growth of Mycobacterium tuberculosis (M. tuberculosis). However, the precise regulatory mechanism governing this system requires further elucidation. Additionally, limited studies have examined the impact of gene mutations related to iron on the transmission of M. tuberculosis globally. This research aims to investigate the correlation between mutations in iron-related genes and the worldwide transmission of M. tuberculosis. RESULTS: A total of 13,532 isolates of M. tuberculosis were included in this study. Among them, 6,104 (45.11%) were identified as genomic clustered isolates, while 8,395 (62.04%) were classified as genomic clade isolates. Our results showed that a total of 12 single nucleotide polymorphisms (SNPs) showed a positive correlation with clustering, such as Rv1469 (ctpD, C758T), Rv3703c (etgB, G1122T), and Rv3743c (ctpJ, G676C). Additionally, seven SNPs, including Rv0104 (T167G, T478G), Rv0211 (pckA, A302C), Rv0283 (eccB3, C423T), Rv1436 (gap, G654T), ctpD C758T, and etgB C578A, demonstrated a positive correlation with transmission clades across different countries. Notably, our findings highlighted the positive association of Rv0104 T167G, pckA A302C, eccB3 C423T, ctpD C758T, and etgB C578A with transmission clades across diverse regions. Furthermore, our analysis identified 78 SNPs that exhibited significant associations with clade size. CONCLUSIONS: Our study reveals the link between iron-related gene SNPs and M. tuberculosis transmission, offering insights into crucial factors influencing the pathogenicity of the disease. This research holds promise for targeted strategies in prevention and treatment, advancing research and interventions in this field.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Sequenciamento Completo do Genoma , Ferro , Mutação , Tuberculose/genética
2.
Cancer Sci ; 115(1): 109-124, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38015097

RESUMO

Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer. Most patients are diagnosed at an advanced stage, therefore it is crucial to identify novel prognostic biomarkers for LUAD. As important regulatory cells, inducible regulatory T cells (iTregs) play a vital role in immune suppression and are important for the maintenance of immune homeostasis. This study explored the prognostic value and therapeutic effects of iTreg-related genes in LUAD. Data for LUAD patients, including immune infiltration data, RNA sequencing data, and clinical features, were acquired from The Cancer Genome Atlas, Gene Expression Omnibus, and Tumor Immune Single-cell Hub 2 databases. Immune-related subgroups with different infiltration patterns and iTreg-related genes were identified through univariate and multivariate Cox regression analyses and weighted correlation network analysis. Functional enrichment analyses were performed to explore the underlying mechanisms of iTreg-related genes. A prognostic risk signature was constructed using Cox regression analysis with the least absolute shrinkage and selection operator penalty. The ESTIMATE algorithm was applied to determine the immune status of LUAD patients. We applied the constructed signature to predict chemosensitivity and performed single-cell RNA sequencing analysis. The infiltration of iTregs was identified as an independent factor for predicting patient outcomes. We constructed a prognostic signature based on seven iTreg-related genes (GIMAP5, SLA, MS4A7, ZNF366, POU2AF1, MRPL12, and COL5A1), which was applied to subdivide patients into high- and low-risk subgroups. Our results revealed that patients in the iTreg-related low-risk subgroup had a better prognosis and possibly greater sensitivity to traditional chemotherapy. Our study provides a novel iTreg-related signature to elucidate the mechanisms underlying LUAD prognosis and promote individualized chemotherapy treatment.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Fatores de Transcrição , Algoritmos
3.
BMC Microbiol ; 24(1): 206, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858614

RESUMO

OBJECTIVE: This study aims to examine the impact of PE/PPE gene mutations on the transmission of Mycobacterium tuberculosis (M. tuberculosis) in China. METHODS: We collected the whole genome sequencing (WGS) data of 3202 M. tuberculosis isolates in China from 2007 to 2018 and investigated the clustering of strains from different lineages. To evaluate the potential role of PE/PPE gene mutations in the dissemination of the pathogen, we employed homoplastic analysis to detect homoplastic single nucleotide polymorphisms (SNPs) within these gene regions. Subsequently, logistic regression analysis was conducted to analyze the statistical association. RESULTS: Based on nationwide M. tuberculosis WGS data, it has been observed that the majority of the M. tuberculosis burden in China is caused by lineage 2 strains, followed by lineage 4. Lineage 2 exhibited a higher number of transmission clusters, totaling 446 clusters, of which 77 were cross-regional clusters. Conversely, there were only 52 transmission clusters in lineage 4, of which 9 were cross-regional clusters. In the analysis of lineage 2 isolates, regression results showed that 4 specific gene mutations, PE4 (position 190,394; c.46G > A), PE_PGRS10 (839,194; c.744 A > G), PE16 (1,607,005; c.620T > G) and PE_PGRS44 (2,921,883; c.333 C > A), were significantly associated with the transmission of M. tuberculosis. Mutations of PE_PGRS10 (839,334; c.884 A > G), PE_PGRS11 (847,613; c.1455G > C), PE_PGRS47 (3,054,724; c.811 A > G) and PPE66 (4,189,930; c.303G > C) exhibited significant associations with the cross-regional clusters. A total of 13 mutation positions showed a positive correlation with clustering size, indicating a positive association. For lineage 4 strains, no mutations were found to enhance transmission, but 2 mutation sites were identified as risk factors for cross-regional clusters. These included PE_PGRS4 (338,100; c.974 A > G) and PPE13 (976,897; c.1307 A > C). CONCLUSION: Our results indicate that some PE/PPE gene mutations can increase the risk of M. tuberculosis transmission, which might provide a basis for controlling the spread of tuberculosis.


Assuntos
Mutação , Mycobacterium tuberculosis , Polimorfismo de Nucleotídeo Único , Tuberculose , Sequenciamento Completo do Genoma , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/isolamento & purificação , China/epidemiologia , Humanos , Tuberculose/transmissão , Tuberculose/microbiologia , Tuberculose/epidemiologia , Genoma Bacteriano , Feminino , Masculino , Proteínas de Bactérias/genética , Adulto
4.
Folia Biol (Praha) ; 70(1): 74-83, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38830125

RESUMO

Chlamydia psittaci pneumonia (CPP) is a lung disease caused by the infection with the Chla-mydia psittaci bacterium, which can lead to severe acute respiratory distress syndrome and systemic symptoms. This study explored the specific mechanisms underlying the impact of reactive oxygen species (ROS) on the Th17/Treg balance in CPP. The levels of ROS and the differentiation ratio of Th17/Treg in the peripheral blood of healthy individuals and CPP patients were measured using ELISA and flow cytometry, respectively. The association between the ROS levels and Th17/Treg was assessed using Pearson correlation analysis. The ROS levels and the Th17/Treg ratio were measured in CD4+ T cells following H2O2 treatment and NLRP3 inhibition. The effects of H2O2 treatment and NLRP3 inhibition on the NLRP3/IL-1ß/caspase-1 pathway were observed using immunoblotting. Compared to the healthy group, the CPP group exhibited increased levels of ROS in the peripheral blood, an elevated ratio of Th17 differentiation, and a decreased ratio of Treg differentiation. ROS levels were positively correlated with the Th17 cell proportion but negatively correlated with the Treg cell proportion. The ROS levels and NLRP3/IL-1ß/caspase-1 expression were up-regulated in CD4+ T cells after H2O2 treatment. Furthermore, there was an increase in Th17 differentiation and a decrease in Treg differentiation. Conversely, the NLRP3/IL-1ß/caspase-1 pathway inhibition reversed the effects of H2O2 treatment, with no significant change in the ROS levels. ROS regulates the Th17/Treg balance in CPP, possibly through the NLRP3/IL-1ß/caspase-1 pathway. This study provides a new perspective on the development of immunotherapy for CPP.


Assuntos
Caspase 1 , Diferenciação Celular , Chlamydophila psittaci , Interleucina-1beta , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio , Linfócitos T Reguladores , Células Th17 , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T Reguladores/imunologia , Caspase 1/metabolismo , Diferenciação Celular/efeitos dos fármacos , Interleucina-1beta/metabolismo , Transdução de Sinais , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Peróxido de Hidrogênio/metabolismo , Psitacose
5.
BMC Genomics ; 24(1): 718, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017383

RESUMO

BACKGROUND: Two-component systems (TCSs) assume a pivotal function in Mycobacterium tuberculosis (M.tuberculosis) growth. However, the exact regulatory mechanism of this system needs to be elucidated, and only a few studies have investigated the effect of gene mutations within TCSs on M.tuberculosis transmission. This research explored the relationship between TCSs gene mutation and the global transmission of (M.tuberculosis). RESULTS: A total of 13531 M.tuberculosis strains were enrolled in the study. Most of the M.tuberculosis strains belonged to lineage4 (n=6497,48.0%), followed by lineage2 (n=5136,38.0%). Our results showed that a total of 36 single nucleotide polymorphisms (SNPs) were positively correlated with clustering of lineage2, such as Rv0758 (phoR, C820G), Rv1747(T1102C), and Rv1057(C1168T). A total of 30 SNPs showed positive correlation with clustering of lineage4, such as phoR(C182A, C1184G, C662T, T758G), Rv3764c (tcrY, G1151T), and Rv1747 C20T. A total of 19 SNPs were positively correlated with cross-country transmission of lineage2, such as phoR A575C, Rv1028c (kdpD, G383T, G1246C), and Rv1057 G817T. A total of 41 SNPs were positively correlated with cross-country transmission of lineage4, such as phoR(T758G, T327G, C284G), kdpD(G1755A, G625C), Rv1057 C980T, and Rv1747 T373G. CONCLUSIONS: Our study identified that SNPs in genes of two-component systems were related to the transmission of M. tuberculosis. This finding adds another layer of complexity to M. tuberculosis virulence and provides insight into future research that will help to elucidate a novel mechanism of M. tuberculosis pathogenicity.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mutação , Sequenciamento Completo do Genoma , Tuberculose/genética , Tuberculose/microbiologia , Polimorfismo de Nucleotídeo Único , Genoma Bacteriano
6.
Small ; 19(14): e2206563, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36642823

RESUMO

Heterostructured materials integrate the advantages of adjustable electronic structure, fast electron/ions transfer kinetics, and robust architectures, which have attracted considerable interest in the fields of rechargeable batteries, photo/electrocatalysis, and supercapacitors. However, the construction of heterostructures still faces some severe problems, such as inferior random packing of components and serious agglomeration. Herein, a terminal group-oriented self-assembly strategy to controllably synthesize a homogeneous layer-by-layer SnSe2 and MXene heterostructure (LBL-SnSe2 @MXene) is designed. Benefitting from the abundant polar terminal groups on the MXene surface, Sn2+ is induced into the interlayer of MXene with large interlayer spacing, which is selenized in situ to obtain LBL-SnSe2 @MXene. In the heterostructure, SnSe2 layers and MXene layers are uniformly intercalated in each other, superior to other heterostructures formed by random stacking. As an anode for lithium-ion batteries, the LBL-SnSe2 @MXene is revealed to possess strong lithium adsorption ability, the small activation energy for lithium diffusion, and excellent structure stability, thus achieving outstanding electrochemical performance, especially with high specific capacities (1311 and 839 mAh g-1 for initial discharge and charge respectively) and ultralong cycling stability (410 mAh g-1 at 5C even after 16 000 cycles). This work conveys an inspiration for the controllable design and construction of homogeneous layered heterostructures.

7.
BMC Microbiol ; 23(1): 379, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041005

RESUMO

BACKGROUND: Fatty acid metabolism greatly promotes the virulence and pathogenicity of Mycobacterium tuberculosis (M.tb). However, the regulatory mechanism of fatty acid metabolism in M.tb remains to be elucidated, and limited evidence about the effects of gene mutations in fatty acid metabolism on the transmission of M.tb was reported. RESULTS: Overall, a total of 3193 M.tb isolates were included in the study, of which 1596 (50%) were genomic clustered isolates. Most of the tuberculosis isolates belonged to lineage2(n = 2744,85.93%), followed by lineage4(n = 439,13.75%) and lineage3(n = 10,0.31%).Regression results showed that the mutations of gca (136,605, 317G > C, Arg106Pro; OR, 22.144; 95% CI, 2.591-189.272), ogt(1,477,346, 286G > C ,Gly96Arg; OR, 3.893; 95%CI, 1.432-10.583), and rpsA (1,834,776, 1235 C > T, Ala412Val; OR, 3.674; 95% CI, 1.217-11.091) were significantly associated with clustering; mutations in gca and rpsA were also significantly associated with clustering of lineage2. Mutation in arsA(3,001,498, 885 C > G, Thr295Thr; OR, 6.278; 95% CI, 2.508-15.711) was significantly associated with cross-regional clusters. We also found that 20 mutation sites were positively correlated with cluster size, while 11 fatty acid mutation sites were negatively correlated with cluster size. CONCLUSION: Our research results suggested that mutations in genes related to fatty acid metabolism were related to the transmission of M.tb. This research could help in the future control of the transmission of M.tb.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Antituberculosos/farmacologia , Tuberculose/microbiologia , Sequenciamento Completo do Genoma , Mutação , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
8.
J Med Virol ; 95(1): e28340, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36420584

RESUMO

Accumulating evidence suggests that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impairs the adaptive immune system during acute infection. Still, it remains largely unclear whether the frequency and functions of T and B cells return to normal after the recovery of Coronavirus Disease 2019 (COVID-19). Here, we analyzed immune repertoires and SARS-CoV-2-specific neutralization antibodies in a prospective cohort of 40 COVID-19 survivors with a 6-month follow-up after hospital discharge. Immune repertoire sequencing revealed abnormal T- and B-cell expression and function with large T cell receptor/B cell receptor clones, decreased diversity, abnormal class-switch recombination, and somatic hypermutation. A decreased number of B cells but an increased proportion of CD19+ CD138+ B cells were found in COVID-19 survivors. The proportion of CD4+ T cells, especially circulating follicular helper T (cTfh) cells, was increased, whereas the frequency of CD3+ CD4- T cells was decreased. SARS-CoV-2-specific neutralization IgG and IgM antibodies were identified in all survivors, especially those recorded with severe COVID-19 who showed a higher inhibition rate of neutralization antibodies. All severe cases complained of more than one COVID-19 sequelae after 6 months of recovery. Overall, our findings indicate that SARS-CoV-2-specific antibodies remain detectable even after 6 months of recovery. Because of their abnormal adaptive immune system with a low number of CD3+ CD4- T cells and high susceptibility to infections, COVID-19 patients might need more time and medical care to fully recover from immune abnormalities and tissue damage.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Estudos Prospectivos , Linfócitos B , Anticorpos Antivirais , Sobreviventes
9.
Bioorg Med Chem Lett ; 96: 129499, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37804993

RESUMO

A4K14-Citropin 1.1 (GLFAVIKKVASVIKGL-NH2) is a derived antimicrobial peptide (AMP) with a more stable α-helical structure at the C-terminal compared to prototype Citropin 1.1 which was obtained from glandular skin secretions of Australian freetail lizards. In a previous report, A4K14-Citropin 1.1 has been considered as an anti-cancer lead compound. However, linear peptides are difficult to maintain stable secondary structure, resulted in poor pharmacokinetic properties. In this study, we designed and synthesized a series of benzyl-stapled derivatives of A4K14-Citropin 1.1. And their physical and chemical properties, as well as biological activity, were both explored. The result showed that AC-CCSP-2-o and AC-CCSP-3-o exhibited a higher degree of helicity and greater anti-cancer activity compared with the prototype peptide. Besides, there was no significant difference in the hemolytic effect between the stapled peptides and the prototype peptide. AC-CCSP-2-o and AC-CCSP-3-o could serve as promising anti-cancer lead compounds for the novel anti-cancer drug development.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Proteínas de Anfíbios/química , Estrutura Secundária de Proteína , Conformação Proteica em alfa-Hélice
10.
Chin J Physiol ; 66(6): 456-465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149558

RESUMO

Recently, evidence has shown that microRNA-100-3p (miR-100-3p) has been revealed as a tumor suppressor in diverse human diseases, while its capability in lung cancer warrants further validation. In this work, we aimed to discuss the impact of sevoflurane on biological functions of lung cancer cells by modulating the miR-100-3p/sterol O-acyltransferase 1 (SOAT1) axis. Lung cancer cell lines (A549 and H460) were treated with various concentrations of sevoflurane. Cell viability, proliferation, migration, and invasion were evaluated using MTT, colony formation, wound healing, and transwell assays. Moreover, miR-100-3p and SOAT1 expressions were evaluated by reverse transcription-quantitative polymerase chain reaction in lung cancer cells. The target interaction between miR-100-3p and SOAT1 was predicted by bioinformatics analysis and verified by the dual-luciferase reporter gene assay. The findings of our work demonstrated that sevoflurane impeded the abilities on viability, proliferation, migration, and invasion of A549 and H460 cells. The expression of miR-100-3p was reduced, and SOAT1 expression was elevated in lung cancer cells. miR-100-3p targeted SOAT1. Besides, sevoflurane could lead to expressed improvement of miR-100-3p or limitation of SOAT1. Downregulation of miR-100-3p or upregulation of SOAT1 restored the suppression of sevoflurane on abilities of viability, proliferation, migration, and invasion in A549 and H460 cells. In the rescue experiment, downregulation of SOAT1 reversed the impacts of downregulation of miR-100-3p on sevoflurane on lung cancer cells. Collectively, our study provides evidence that sevoflurane restrained the proliferation and invasion in lung cancer cells by modulating the miR-100-3p/SOAT1 axis. This article provides a new idea for further study of the pathogenesis of lung cancer.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Sevoflurano , Sevoflurano/farmacologia , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , MicroRNAs/metabolismo , Esterol O-Aciltransferase/metabolismo , Linhagem Celular Tumoral , Células A549 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Antineoplásicos/farmacologia , Transdução de Sinais
11.
Anal Bioanal Chem ; 414(27): 7923-7933, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36136111

RESUMO

The phosphorylation process of DNA by T4 polynucleotide kinase (T4 PNK) plays a crucial role in DNA recombination, DNA replication, and DNA repair. Traditional monomeric G-quadruplex (G4) systems are always activated by single cation such as K+ or Na+. The conformation transformation caused by the coexistence of multiple cations may interfere with the signal readout and limit their applications in physiological system. In view of the stability of dimeric G4 in multiple cation solution, we reported a label-free T4 PNK fluorescence sensor based on split dimeric G4 and ligation-induced dimeric G4/thioflavin T (ThT) conformation. The dimeric G4 was divided into two independent pieces of one normal monomeric G4 and the other monomeric G4 fragment phosphorylated by T4 PNK in order to decrease the background signal. With the introduction of template DNA, DNA ligase, and invasive DNA, the dimeric G4 could be generated and liberated to combine with ThT to show obvious fluorescence signal. Using our strategy, the linear range from 0.005 to 0.5 U mL-1, and the detection limit of 0.0021 U mL-1 could be achieved without the consideration of interference caused by the coexistence of multiple cations. Additionally, research in real sample determination and inhibition effect investigations indicated its further potential application value in biochemical process research and clinic diagnostics.


Assuntos
Técnicas Biossensoriais , Quadruplex G , Bacteriófago T4/metabolismo , Benzotiazóis , DNA/química , DNA Ligases , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Espectrometria de Fluorescência
12.
Angew Chem Int Ed Engl ; 61(40): e202209793, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35916871

RESUMO

Herein, we report an activatable near-infrared (NIR) afterglow theranostic prodrug that circumvents high background noise interference caused by external light excitation. The prodrug can release hydroxycamptothecin (HCPT) in response to the high intratumoral peroxynitrite level associated with immunogenic cell death (ICD), and synchronously activate afterglow signal to monitor the drug release process and cold-to-hot tumor transformation. The prodrug itself is an ICD inducer achieved by photodynamic therapy (PDT). PDT initiates ICD and recruits first-arrived neutrophils to secrete peroxynitrite to trigger HCPT release. Intriguingly, we demonstrate that HCPT can significantly amplify PDT-mediated ICD process. The prodrug thus shows a self-sustainable ICD magnification effect by establishing an "ICD-HCPT release-amplified ICD" cycling loop. In vivo studies demonstrate that the prodrug can eradicate existing tumors and prevent further tumor recurrence through antitumor immune response.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Pró-Fármacos , Linhagem Celular Tumoral , Humanos , Morte Celular Imunogênica , Neoplasias/tratamento farmacológico , Ácido Peroxinitroso/uso terapêutico , Medicina de Precisão , Pró-Fármacos/metabolismo
13.
J Environ Sci (China) ; 100: 82-89, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33279056

RESUMO

After adding either organic or inorganic ligands, sulfidated nano-zero-valent iron (SnZVI) was used for aerobic degradation of phenol, and the effect of the ligand species on oxidation performance was investigated. We found that SnZVI hardly degraded phenol in the absence of ligand addition. Ligands initiated and promoted the degradation of pollutants by SnZVI. The data herein show that a characteristic inorganic ligand, tripolyphosphate (TPP), is more effective in enhancing oxidation than a characteristic organic ligand oxalate. In addition to the scavenging of reactive oxidants by the organic ligand, more ferrous ion (Fe(II)) dissolution from SnZVI in the TPP system is another cause for the superior enhancement by the inorganic ligand. In the oxalate system, as the sulfur content of SnZVI increased, the oxidation efficiency increased because FeS shell promoted the transfer of electrons to produce more reactive oxygen species (ROS). In TPP system, the effect of sulfur content on oxidation performance is more complex. The SnZVI with low sulfur content showed poor oxidation performance compared with that of nZVI. Further experiments proved that sulfidation might weaken the complexation of TPP with surface bound Fe, which would slow down the ionic Fe(II) dissolution rate. Therefore, sulfidation has the dual effects of enhancing electron transfer and inhibiting the complexation of inorganic ligands. In addition, the mechanisms of ROS generation in different ligand systems were investigated herein. Results showed that the critical ROS in both the oxalate and TPP systems are hydroxyl radicals, and that they are produced via one-electron activation of O2.


Assuntos
Ferro , Fenol , Ligantes , Oxalatos , Oxirredução , Estresse Oxidativo , Polifosfatos
14.
J Environ Sci (China) ; 90: 375-384, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32081333

RESUMO

In this study, sodium tripolyphosphate (STPP) was used to promote the removal of organic pollutants in a zero-valent copper (ZVC)/O2 system under neutral conditions for the first time. 20 mg/L p-nitrophenol (PNP) can be completely decomposed within 120 min in the ZVC/O2/STPP system. The PNP degradation process followed pseudo-first-order kinetics and the degradation rate of PNP gradually increased upon the decreasing ZVC particle size. The optimal pH of the reaction system was 5.0. Our mechanism investigation showed that Cu+ generated by ZVC corrosion was the main reducing agent for the activation of O2 to produce ROS. ·OH was identified as the only ROS formed during the degradation of PNP and its production pathway was the double-electron activation of O2 (O2→H2O2→·OH). In this process, STPP did not only promote the release of Cu+ through its complexation, but also promoted the production of ·OH by reducing the redox potential of Cu2+/Cu+. In addition, we could initiate and terminate the reaction by controlling the pH. At pH < 8.1, ZVC/O2/STPP could continuously degrade organic pollutants; at pH > 8.1, the reaction was terminated. STPP was recycled to continuously promote the corrosion of ZVC and O2 activation as long as the pH was <8.1. This study provided a new and efficient way for O2 activation and organic contaminants removal.


Assuntos
Cobre/química , Modelos Químicos , Polifosfatos/química , Poluentes Químicos da Água/química , Peróxido de Hidrogênio , Oxirredução , Oxigênio
17.
Respiration ; 96(6): 571-587, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30308515

RESUMO

The mechanisms of idiopathic pulmonary fibrosis (IPF), a rare, devastating disease with a median survival of 3-5 years, are not fully understood. Gastroesophageal reflux disease (GERD) is a frequent comorbidity encountered in IPF. Hypothetically, GERD-associated microaspiration may lead to persistent inflammation impairing lung infrastructure, thereby possibly accelerating the progression of IPF. IPF may increase intrathoracic pressure, which can aggravate GERD and vice versa. On the basis of the possible beneficial effects of antireflux or antacid therapy on lung function, acute exacerbation, and survival, the recent international IPF guideline recommends antacid therapies for patients with IPF, regardless of symptomatic GERD. However, due to newer conflicting data, several national guidelines do not support this recommendation. Elucidation of these questions by further clinical and bench-to-bedside research may provide us with rational clinical diagnostic and therapeutic approaches concerning GERD in IPF. The present review aims to discuss the latest data on the controversial association of IPF and GERD.


Assuntos
Refluxo Gastroesofágico/complicações , Fibrose Pulmonar Idiopática/complicações , Animais , Refluxo Gastroesofágico/diagnóstico , Refluxo Gastroesofágico/epidemiologia , Refluxo Gastroesofágico/terapia , Humanos , Prevalência , Inibidores da Bomba de Prótons/uso terapêutico , Aspiração Respiratória
18.
Cell Physiol Biochem ; 44(2): 455-466, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29141252

RESUMO

BACKGROUND/AIMS: Lung cancer is one of the leading causes for cancer mortality. The poor therapeutic outcome of non-small cell lung carcinoma (NSCLC) is mainly due to late diagnosis and chemoresistance. In this study, we investigated the role of Musashi1 (MSI1) in NSCLC malignancy and chemoresistance. METHODS: Colony formation, MTT, glucose uptake and lactate production assays were employed to study lung cancer cell malignancy and chemoresistance. RT-PCR and Western blotting were performed to detect mRNA and protein expressions of genes. We used immunohistochemistry and Pearson correlation analysis to study the relationship of gene expression. RESULTS: We demonstrated that MSI1 was able to promote the proliferation and glucose metabolism of NSCLC cells, and to mediate the sensitivity to chemotherapy drugs in NSCLC cells. Importantly, we found that MSI1 could regulate the activity of Akt signaling. The regulation of NSCLC proliferation, glucose metabolism and chemoresistance by MSI1 was dependent on the modulation of the activity of the Akt signaling pathway. We also found that MSI1 was a target of miR-181a-5p, a microRNA involved in the regulation of cancer development. The expression levels of MSI1 and miR-181a-5p were negatively correlated in NSCLC. CONCLUSION: MSI1 promotes non-small cell lung carcinoma malignancy and chemoresistance via activating the Akt signaling pathway, which provides a new strategy for the therapy of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Neoplasias Pulmonares/diagnóstico , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas , Células A549 , Sequência de Bases , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/toxicidade , Resistencia a Medicamentos Antineoplásicos , Glucose/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Consumo de Oxigênio/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Alinhamento de Sequência , Transdução de Sinais/efeitos dos fármacos
19.
Biochem Biophys Res Commun ; 484(3): 694-701, 2017 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-28161641

RESUMO

Cisplatin is one of the most effective chemotherapeutic agents; however, its clinical use is limited by serious side effects of which nephrotoxicity is the most important. Nephrotoxicity induced by cisplatin is closely associated with autophagy reduction and caspase activation. In this study, we investigated whether neferine, an autophagy inducer, had a protective effect against cisplatin-induced nephrotoxicity. In an in vitro cisplatin-induced nephrotoxicity model, we determined that neferine was able to induce autophagy and that pretreatment with neferine not only attenuated cisplatin-induced cell apoptosis but further activated cell autophagy. This pro-survival effect was abolished by the autophagic flux inhibitor chloroquine. Furthermore, neferine pretreatment activated the AMPK/mTOR pathway; however, pharmacological inhibition of AMPK abolished neferine-mediated autophagy and nephroprotection against cisplatin-induced apoptosis. Collectively, our findings suggest for the first time the possible protective mechanism of neferine, which is crucial for its further development as a potential therapeutic agent for cisplatin-induced nephrotoxicity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Benzilisoquinolinas/administração & dosagem , Cisplatino/efeitos adversos , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Animais , Antineoplásicos/efeitos adversos , Linhagem Celular , Citoproteção/efeitos dos fármacos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Nefropatias/prevenção & controle , Ratos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
20.
Mol Genet Genomics ; 292(4): 833-846, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28357596

RESUMO

Alu elements in the human genome are present in more than one million copies, accounting for 10% of the genome. However, the biological functions of most Alu repeats are unknown. In this present study, we detected the effects of Alu elements on EGFP gene expression using a plasmid system to find the roles of Alu elements in human genome. We inserted 5'-4TMI-Alus-CMV promoter-4TMI-Alus (or antisense Alus)-3' sequences into the pEGFP-C1 vector to construct expression vectors. We altered the copy number of Alus, the orientation of the Alus, and the presence of an enhancer (4TMI) in the inserted 5'-4TMI-Alus-CMV promoter-4TMI-Alus (or antisense Alus)-3' sequences. These expression vectors were stably transfected into HeLa cells, and EGFP reporter gene expression was determined. Our results showed that combined sense-antisense Alu elements activated the EGFP reporter gene in the presence of enhancers and stable transfection. The combined sense-antisense Alu vectors carrying four copies of Alus downstream of inserted CMV induced much stronger EGFP gene expression than two copies. Alus downstream of inserted CMV were replaced to AluJBs (having 76% homology with Alu) to construct expression vectors. We found that combined sense-antisense Alu (or antisense AluJB) vectors induced strong EGFP gene expression after stable transfection and heat shock. To further explore combined sense-antisense Alus activating EGFP gene expression, we constructed Tet-on system vectors, mini-C1-Alu-sense-sense and mini-C1-Alu-sense-antisense (EGFP gene was driven by mini-CMV). We found that combined sense-antisense Alus activated EGFP gene in the presence of reverse tetracycline repressor (rTetR) and doxycycline (Dox). Clone experiments showed that Mini-C1-Alu-sense-antisense vector had more positive cells than that of Mini-C1-Alu-sense-sense vector. The results in this paper proved that Alu repetitive sequences inhibited gene expression and combined sense-antisense Alus activated EGFP reporter gene when Alu transcribes, which suggests that Alus play roles in maintaining gene expression (silencing genes or activating genes) in human genome.


Assuntos
Elementos Alu/genética , Elementos Antissenso (Genética)/genética , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Sequências Reguladoras de Ácido Nucleico/genética , Linhagem Celular Tumoral , Dosagem de Genes/genética , Genoma Humano , Células HeLa , Humanos , Regiões Promotoras Genéticas , Ativação Transcricional/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA