Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628514

RESUMO

The current methods for measuring the DNA damage response (DDR) are relatively labor-intensive and usually based on Western blotting, flow cytometry, and/or confocal immunofluorescence analyses. They require many cells and are often limited to the assessment of a single or few proteins. Here, we used the Celigo® image cytometer to evaluate the cell response to DNA-damaging agents based on a panel of biomarkers associated with the main DDR signaling pathways. We investigated the cytostatic or/and the cytotoxic effects of these drugs using simultaneous propidium iodide and calcein-AM staining. We also describe new dedicated multiplexed protocols to investigate the qualitative (phosphorylation) or the quantitative changes of eleven DDR markers (H2AX, DNA-PKcs, ATR, ATM, CHK1, CHK2, 53BP1, NBS1, RAD51, P53, P21). The results of our study clearly show the advantage of using this methodology because the multiplexed-based evaluation of these markers can be performed in a single experiment using the standard 384-well plate format. The analyses of multiple DDR markers together with the cell cycle status provide valuable insights into the mechanism of action of investigational drugs that induce DNA damage in a time- and cost-effective manner due to the low amounts of antibodies and reagents required.


Assuntos
Antineoplásicos , Dano ao DNA , Antineoplásicos/farmacologia , Ciclo Celular , DNA , Fosforilação
2.
Cell Microbiol ; 17(1): 62-78, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25088010

RESUMO

Apicomplexa possess a complex pellicle that is composed of a plasma membrane and a closely apposed inner membrane complex (IMC) that serves as a support for the actin-myosin motor required for motility and host cell invasion. The IMC consists of longitudinal plates of flattened vesicles, fused together and lined on the cytoplasmic side by a subpellicular network of intermediate filament-like proteins. The spatial organization of the IMC has been well described by electron microscopy, but its composition and molecular organization is largely unknown. Here, we identify a novel protein of the IMC cytoskeletal network in Toxoplasma gondii, called TgSIP, and conserved among apicomplexan parasites. To finely pinpoint the localization of TgSIP, we used structured illumination super-resolution microscopy and revealed that it likely decorates the transverse sutures of the plates and the basal end of the IMC. This suggests that TgSIP might contribute to the organization or physical connection among the different components of the IMC. We generated a T.gondii SIP deletion mutant and showed that parasites lacking TgSIP are significantly shorter than wild-type parasites and show defects in gliding motility, invasion and reduced infectivity in mice.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Toxoplasma/citologia , Toxoplasma/fisiologia , Animais , Vesículas Citoplasmáticas/química , Proteínas do Citoesqueleto/genética , Deleção de Genes , Locomoção , Camundongos , Microscopia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Análise de Sobrevida , Toxoplasma/genética , Toxoplasmose Animal/parasitologia , Toxoplasmose Animal/patologia , Virulência
3.
Nat Commun ; 5: 4098, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24934579

RESUMO

Malaria and toxoplasmosis are infectious diseases caused by the apicomplexan parasites Plasmodium and Toxoplasma gondii, respectively. These parasites have developed an invasion mechanism involving the formation of a moving junction (MJ) that anchors the parasite to the host cell and forms a ring through which the parasite penetrates. The composition and the assembly of the MJ, and in particular the presence of protein AMA1 and its interaction with protein RON2 at the MJ, have been the subject of intense controversy. Here, using reverse genetics, we show that AMA1, a vaccine candidate, interacts with RON2 to maintain the MJ structural integrity in T. gondii and is subsequently required for parasite internalization. Moreover, we show that disruption of the AMA1 gene results in upregulation of AMA1 and RON2 homologues that cooperate to support residual invasion. Our study highlights a considerable complexity and molecular plasticity in the architecture of the MJ.


Assuntos
Antígenos de Protozoários/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/parasitologia , Antígenos de Protozoários/genética , Deleção de Genes , Humanos , Modelos Moleculares , Ligação Proteica , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasma/patogenicidade , Virulência
4.
Autophagy ; 9(9): 1334-48, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23748741

RESUMO

In the process of autophagy, the Atg8 protein is conjugated, through a ubiquitin-like system, to the lipid phosphatidylethanolamine (PE) to associate with the membrane of forming autophagosomes. There, it plays a crucial role in the genesis of these organelles and in autophagy in general. In most eukaryotes, the cysteine peptidase Atg4 processes the C terminus of cytosolic Atg8 to regulate its association with autophagosomal membranes and also delipidates Atg8 to release this protein from membranes. The parasitic protist Toxoplasma gondii contains a functional, yet apparently reduced, autophagic machinery. T. gondii Atg8 homolog, in addition to a cytosolic and occasionally autophagosomal localization, also localizes to the apicoplast, a nonphotosynthetic plastid bounded by four membranes. Our attempts to interfere with TgATG8 function showed that it appears to be essential for parasite multiplication inside its host cell. This protein also displays a peculiar C terminus that does not seem to necessitate processing prior to membrane association and yet an unusually large Toxoplasma homolog of ATG4 is predicted in the parasite genome. A TgATG4 conditional expression mutant that we have generated is severely affected in growth, and displays significant alterations at the organellar level, noticeably with a fragmentation of the mitochondrial network and a loss of the apicoplast. TgATG4-depleted parasites appear to be defective in the recycling of membrane-bound TgATG8. Overall, our data highlight a role for the TgATG8 conjugation pathway in maintaining the homeostasis of the parasite's organelles and suggest that Toxoplasma has evolved a specialized autophagic machinery with original regulation.


Assuntos
Membrana Celular/metabolismo , Parasitos/citologia , Parasitos/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/citologia , Toxoplasma/metabolismo , Animais , Apicoplastos/metabolismo , Apicoplastos/ultraestrutura , Linhagem Celular , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/metabolismo , Homeostase , Humanos , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Dados de Sequência Molecular , Mutação/genética , Parasitos/ultraestrutura , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Transporte Proteico , Proteínas de Protozoários/química , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA