Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Imaging Biol ; 19(3): 385-390, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28396973

RESUMO

Magnetic particle imaging (MPI) is a new molecular imaging technique that directly images superparamagnetic tracers with high image contrast and sensitivity approaching nuclear medicine techniques-but without ionizing radiation. Since its inception, the MPI research field has quickly progressed in imaging theory, hardware, tracer design, and biomedical applications. Here, we describe the history and field of MPI, outline pressing challenges to MPI technology and clinical translation, highlight unique applications in MPI, and describe the role of the WMIS MPI Interest Group in collaboratively advancing MPI as a molecular imaging technique. We invite interested investigators to join the MPI Interest Group and contribute new insights and innovations to the MPI field.


Assuntos
Dextranos/química , Nanopartículas de Magnetita/química , Imagem Molecular/métodos , Animais , Humanos
2.
Med Phys ; 43(1): 424, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26745935

RESUMO

PURPOSE: Magnetic particle imaging (MPI) is a new imaging technology that directly detects superparamagnetic iron oxide nanoparticles. The technique has potential medical applications in angiography, cell tracking, and cancer detection. In this paper, the authors explore how nanoparticle relaxation affects image resolution. Historically, researchers have analyzed nanoparticle behavior by studying the time constant of the nanoparticle physical rotation. In contrast, in this paper, the authors focus instead on how the time constant of nanoparticle rotation affects the final image resolution, and this reveals nonobvious conclusions for tailoring MPI imaging parameters for optimal spatial resolution. METHODS: The authors first extend x-space systems theory to include nanoparticle relaxation. The authors then measure the spatial resolution and relative signal levels in an MPI relaxometer and a 3D MPI imager at multiple drive field amplitudes and frequencies. Finally, these image measurements are used to estimate relaxation times and nanoparticle phase lags. RESULTS: The authors demonstrate that spatial resolution, as measured by full-width at half-maximum, improves at lower drive field amplitudes. The authors further determine that relaxation in MPI can be approximated as a frequency-independent phase lag. These results enable the authors to accurately predict MPI resolution and sensitivity across a wide range of drive field amplitudes and frequencies. CONCLUSIONS: To balance resolution, signal-to-noise ratio, specific absorption rate, and magnetostimulation requirements, the drive field can be a low amplitude and high frequency. Continued research into how the MPI drive field affects relaxation and its adverse effects will be crucial for developing new nanoparticles tailored to the unique physics of MPI. Moreover, this theory informs researchers how to design scanning sequences to minimize relaxation-induced blurring for better spatial resolution or to exploit relaxation-induced blurring for MPI with molecular contrast.


Assuntos
Compostos Férricos/química , Aumento da Imagem/métodos , Imãs , Imagem Molecular/métodos , Nanopartículas , Razão Sinal-Ruído , Algoritmos , Imageamento Tridimensional , Imagem Molecular/instrumentação
3.
PLoS One ; 10(10): e0140137, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26495839

RESUMO

Magnetic Particle Imaging (mpi) is an emerging imaging modality with exceptional promise for clinical applications in rapid angiography, cell therapy tracking, cancer imaging, and inflammation imaging. Recent publications have demonstrated quantitative mpi across rat sized fields of view with x-space reconstruction methods. Critical to any medical imaging technology is the reliability and accuracy of image reconstruction. Because the average value of the mpi signal is lost during direct-feedthrough signal filtering, mpi reconstruction algorithms must recover this zero-frequency value. Prior x-space mpi recovery techniques were limited to 1d approaches which could introduce artifacts when reconstructing a 3d image. In this paper, we formulate x-space reconstruction as a 3d convex optimization problem and apply robust a priori knowledge of image smoothness and non-negativity to reduce non-physical banding and haze artifacts. We conclude with a discussion of the powerful extensibility of the presented formulation for future applications.


Assuntos
Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Nanopartículas de Magnetita/química , Algoritmos , Vasos Coronários/patologia , Humanos , Modelos Teóricos , Imagens de Fantasmas , Reprodutibilidade dos Testes
4.
IEEE Trans Med Imaging ; 34(5): 1077-84, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25438306

RESUMO

Magnetic particle imaging (MPI) shows promise for medical imaging, particularly in angiography of patients with chronic kidney disease. As the first biomedical imaging technique that truly depends on nanoscale materials properties, MPI requires highly optimized magnetic nanoparticle tracers to generate quality images. Until now, researchers have relied on tracers optimized for MRI T2(∗) -weighted imaging that are sub-optimal for MPI. Here, we describe new tracers tailored to MPI's unique physics, synthesized using an organic-phase process and functionalized to ensure biocompatibility and adequate in vivo circulation time. Tailored tracers showed up to 3 × greater signal-to-noise ratio and better spatial resolution than existing commercial tracers in MPI images of phantoms.


Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas
5.
IEEE Trans Med Imaging ; 32(2): 338-47, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23193308

RESUMO

We acquire the first experimental 3-D tomographic images with magnetic particle imaging (MPI) using projection reconstruction methodology, which is similar to algorithms employed in X-ray computed tomography. The primary advantage of projection reconstruction methods is an order of magnitude increase in signal-to-noise ratio (SNR) due to averaging. We first derive the point spread function, resolution, number of projections required, and the SNR gain in projection reconstruction MPI. We then design and construct the first scanner capable of gathering the necessary data for nonaliased projection reconstruction and experimentally verify our mathematical predictions. We demonstrate that filtered backprojection in MPI is experimentally feasible and illustrate the SNR and resolution improvements with projection reconstruction. Finally, we show that MPI is capable of producing three dimensional imaging volumes in both phantoms and postmortem mice.


Assuntos
Algoritmos , Dextranos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Imagem Corporal Total/métodos , Animais , Meios de Contraste , Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Camundongos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Imagem Corporal Total/instrumentação
6.
J Magn Reson ; 229: 116-26, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23305842

RESUMO

Magnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for Chronic Kidney Disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium-MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the "black blood" contrast generated by SPIOs in MRI due to increased T2* dephasing, SPIOs in MPI generate positive, "bright blood" contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field.


Assuntos
Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Magnetismo , Algoritmos , Animais , Meios de Contraste/efeitos adversos , Campos Eletromagnéticos , Desenho de Equipamento , Fluoroscopia , Humanos , Falência Renal Crônica/diagnóstico , Falência Renal Crônica/patologia , Angiografia por Ressonância Magnética/efeitos adversos , Angiografia por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/instrumentação , Nanopartículas , Células-Tronco/fisiologia , Imagem Corporal Total/instrumentação
7.
Biomed Tech (Berl) ; 58(6): 565-76, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23940058

RESUMO

We experimentally demonstrate a 20-fold improvement in acquisition time in projection reconstruction (PR) magnetic particle imaging (MPI) relative to the state-of-the-art PR MPI imaging results. We achieve this acceleration in our imaging system by introducing an additional Helmholtz electromagnet pair, which creates a slow shift (focus) field. Because of magnetostimulation limits in humans, we show that scan time with three-dimensional (3D) PR MPI is theoretically within the same order of magnitude as 3D MPI with a field free point; however, PR MPI has an order of magnitude signal-to-noise ratio gain.


Assuntos
Algoritmos , Aumento da Imagem/instrumentação , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/instrumentação , Nanopartículas de Magnetita , Imagem Molecular/instrumentação , Desenho Assistido por Computador , Meios de Contraste , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
IEEE Trans Med Imaging ; 31(5): 1076-85, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22552332

RESUMO

Projection magnetic particle imaging (MPI) can improve imaging speed by over 100-fold over traditional 3-D MPI. In this work, we derive the 2-D x-space signal equation, 2-D image equation, and introduce the concept of signal fading and resolution loss for a projection MPI imager. We then describe the design and construction of an x-space projection MPI scanner with a field gradient of 2.35 T/m across a 10 cm magnet free bore. The system has an expected resolution of 3.5 × 8.0 mm using Resovist tracer, and an experimental resolution of 3.8 × 8.4 mm resolution. The system images 2.5 cm × 5.0 cm partial field-of views (FOVs) at 10 frames/s, and acquires a full field-of-view of 10 cm × 5.0 cm in 4 s. We conclude by imaging a resolution phantom, a complex "Cal" phantom, mice injected with Resovist tracer, and experimentally confirm the theoretically predicted x-space spatial resolution.


Assuntos
Angiografia/métodos , Meios de Contraste/química , Dextranos/química , Nanopartículas de Magnetita/química , Animais , Química Encefálica , Simulação por Computador , Meios de Contraste/administração & dosagem , Meios de Contraste/farmacocinética , Dextranos/administração & dosagem , Dextranos/farmacocinética , Fígado/química , Fígado/metabolismo , Nanopartículas de Magnetita/administração & dosagem , Camundongos , Miocárdio/química , Miocárdio/metabolismo , Imagens de Fantasmas , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA