Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 38(42): 12822-12832, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36220141

RESUMO

Chemical reactions and biological processes are frequently governed by the structure and dynamics of the interface between two liquid phases, but these interfaces are often difficult to study due to the relative abundance of the bulk liquids. Here, we demonstrate a method for generating multilayer thin film stacks of liquids, which we call liquid heterostructures. These free-flowing layered liquid sheets are produced with a microfluidic nozzle that impinges two converging jets of one liquid onto opposite sides of a third jet of another liquid. The resulting sheet consists of two layers of the first liquid enveloping an inner layer of the second liquid. Infrared microscopy, white light reflectivity, and imaging ellipsometry measurements demonstrate that the buried liquid layer has a tunable thickness and displays well-defined liquid-liquid interfaces and that this inner layer can be only tens of nanometers thick. The demonstrated multilayer liquid sheets minimize the amount of bulk liquid relative to their buried interfaces, which makes them ideal targets for spectroscopy and scattering experiments.

2.
Front Mol Biosci ; 9: 1048932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36567947

RESUMO

The high intensity of X-ray free electron lasers (XFELs) can damage solution-phase samples on every scale, ranging from the molecular or electronic structure of a sample to the macroscopic structure of a liquid microjet. By using a large surface area liquid sheet microjet as a sample target instead of a standard cylindrical microjet, the incident X-ray spot size can be increased such that the incident intensity falls below the damage threshold. This capability is becoming particularly important for high repetition rate XFELs, where destroying a target with each pulse would require prohibitively large volumes of sample. We present here a study of microfluidic liquid sheet dimensions as a function of liquid flow rate. Sheet lengths, widths and thickness gradients are shown for three styles of nozzles fabricated from isotropically etched glass. In-vacuum operation and sample recirculation using these nozzles is demonstrated. The effects of intense XFEL pulses on the structure of a liquid sheet are also briefly examined.

3.
J Phys Chem B ; 124(47): 10732-10738, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33174757

RESUMO

We have used transient absorption spectroscopy in the UV-visible and X-ray regions to characterize the excited state of CarH, a protein photoreceptor that uses a form of B12, adenosylcobalamin (AdoCbl), to sense light. With visible excitation, a nanosecond-lifetime photoactive excited state is formed with unit quantum yield. The time-resolved X-ray absorption near edge structure difference spectrum of this state demonstrates that the excited state of AdoCbl in CarH undergoes only modest structural expansion around the central cobalt, a behavior similar to that observed for methylcobalamin rather than for AdoCbl free in solution. We propose a new mechanism for CarH photoreactivity involving formation of a triplet excited state. This allows the sensor to operate with high quantum efficiency and without formation of potentially dangerous side products. By stabilizing the excited electronic state, CarH controls reactivity of AdoCbl and enables slow reactions that yield nonreactive products and bypass bond homolysis and reactive radical species formation.


Assuntos
Cobalto
4.
IUCrJ ; 7(Pt 2): 306-323, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148858

RESUMO

Innovative new crystallographic methods are facilitating structural studies from ever smaller crystals of biological macromolecules. In particular, serial X-ray crystallography and microcrystal electron diffraction (MicroED) have emerged as useful methods for obtaining structural information from crystals on the nanometre to micrometre scale. Despite the utility of these methods, their implementation can often be difficult, as they present many challenges that are not encountered in traditional macromolecular crystallography experiments. Here, XFEL serial crystallography experiments and MicroED experiments using batch-grown microcrystals of the enzyme cyclophilin A are described. The results provide a roadmap for researchers hoping to design macromolecular microcrystallography experiments, and they highlight the strengths and weaknesses of the two methods. Specifically, we focus on how the different physical conditions imposed by the sample-preparation and delivery methods required for each type of experiment affect the crystal structure of the enzyme.

5.
Nat Commun ; 10(1): 1615, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944301

RESUMO

The original version of this Article contained an error in Eq. (1). This has been corrected in both the PDF and HTML versions of the Article.

6.
Nat Commun ; 9(1): 1353, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636445

RESUMO

The physics and chemistry of liquid solutions play a central role in science, and our understanding of life on Earth. Unfortunately, key tools for interrogating aqueous systems, such as infrared and soft X-ray spectroscopy, cannot readily be applied because of strong absorption in water. Here we use gas-dynamic forces to generate free-flowing, sub-micron, liquid sheets which are two orders of magnitude thinner than anything previously reported. Optical, infrared, and X-ray spectroscopies are used to characterize the sheets, which are found to be tunable in thickness from over 1 µm  down to less than 20 nm, which corresponds to fewer than 100 water molecules thick. At this thickness, aqueous sheets can readily transmit photons across the spectrum, leading to potentially transformative applications in infrared, X-ray, electron spectroscopies and beyond. The ultrathin sheets are stable for days in vacuum, and we demonstrate their use at free-electron laser and synchrotron light sources.

7.
Nat Commun ; 9(1): 2860, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018291

RESUMO

The original version of this article omitted the following from the Acknowledgements:'P.B. was funded by the ELI Extreme Light Infrastructure Phase 2 (CZ.02.1.01/0.0/0.0/15008/0000162) from the European Regional Development Fund and the EUCALL project funded from the EU Horizon 2020 research and innovation programme under grant agreement No 654220,' which replaces the previous 'P.B. was funded by the ELI Extreme Light Infrastructure Phase 2 (CZ.02.1.01/0.0/0.0/15008/0000162) from the European Regional Development Fund.'This has been corrected in both the PDF and HTML versions of the article.

8.
Sci Rep ; 6: 35279, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27756898

RESUMO

Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 Å resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 Å resolution derived from conventional crystallography at cryogenic temperatures, which we also report here. The thioether linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but is fully resolved with SFX. The study paves the way for time-resolved structural investigations of the phytochrome photocycle with time-resolved SFX.


Assuntos
Cristalografia por Raios X , Deinococcus/química , Fitocromo/química , Conformação Proteica , Cristalização , Temperatura
9.
Science ; 336(6085): 1137-9, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22654053

RESUMO

In high-temperature superconductivity, the process that leads to the formation of Cooper pairs, the fundamental charge carriers in any superconductor, remains mysterious. We used a femtosecond laser pump pulse to perturb superconducting Bi(2)Sr(2)CaCu(2)O(8+δ) and studied subsequent dynamics using time- and angle-resolved photoemission and infrared reflectivity probes. Gap and quasiparticle population dynamics revealed marked dependencies on both excitation density and crystal momentum. Close to the d-wave nodes, the superconducting gap was sensitive to the pump intensity, and Cooper pairs recombined slowly. Far from the nodes, pumping affected the gap only weakly, and recombination processes were faster. These results demonstrate a new window into the dynamical processes that govern quasiparticle recombination and gap formation in cuprates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA