Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 296: 120680, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38857819

RESUMO

Magnetic Resonance Imaging (MRI) can provide the location and signal characteristics of pathological regions within a postmortem tissue block, thereby improving the efficiency of histopathological studies. However, such postmortem-MRI guided histopathological studies have so far only been performed on fixed samples as imaging tissue frozen at the time of extraction, while preserving its integrity, is significantly more challenging. Here we describe the development of cold-postmortem-MRI, which can preserve tissue integrity and help target techniques such as transcriptomics. As a first step, RNA integrity number (RIN) was used to determine the rate of tissue biomolecular degradation in mouse brains placed at various temperatures between -20 °C and +20 °C for up to 24 h. Then, human tissue frozen at the time of autopsy was immersed in 2-methylbutane, sealed in a bio-safe tissue chamber, and cooled in the MRI using a recirculating chiller to determine MRI signal characteristics. The optimal imaging temperature, which did not show significant RIN deterioration for over 12 h, at the same time giving robust MRI signal and contrast between brain tissue types was deemed to be -7 °C. Finally, MRI was performed on human tissue blocks at this optimal imaging temperatures using a magnetization-prepared rapid gradient echo (MPRAGE, isotropic resolution between 0.3-0.4 mm) revealing good gray-white matter contrast and revealing subpial, subcortical, and deep white matter lesions. RINs measured before and after imaging revealed no significant changes (n = 3, p = 0.18, paired t-test). In addition to improving efficiency of downstream processes, imaging tissue at sub-zero temperatures may also improve our understanding of compartment specificity of MRI signal.


Assuntos
Autopsia , Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Camundongos , Autopsia/métodos , Animais , Congelamento , Masculino , Feminino , Camundongos Endogâmicos C57BL , Neuroimagem/métodos
2.
Magn Reson Med ; 92(2): 820-835, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38573932

RESUMO

PURPOSE: Gene-expression reporter systems, such as green fluorescent protein, have been instrumental to understanding biological processes in living organisms at organ system, tissue, cell, and molecular scales. More than 30 years of work on developing MRI-visible gene-expression reporter systems has resulted in a variety of clever application-specific methods. However, these techniques have not yet been widely adopted, so a general-purpose expression reporter is still required. Here, we demonstrate that the manganese ion transporter Zip14 is an in vivo MRI-visible, flexible, and robust gene-expression reporter to meet this need. METHODS: Plasmid constructs consisting of a cell type-specific promoter, gene coding for human Zip14, and a histology-visible tag were packaged into adeno-associated viruses. These viruses were intracranially injected into the mouse brain. Serial in vivo MRI was performed using a vendor-supplied 3D-MPRAGE sequence. No additional contrast agents were administered. Animals were sacrificed after the last imaging timepoint for immunohistological validation. RESULTS: Neuron-specific overexpression of Zip14 produced substantial and long-lasting changes in MRI contrast. Using appropriate viruses enabled both anterograde and retrograde neural tracing. Expression of Zip14 in astrocytes also enabled MRI of glia populations in the living mammalian brain. CONCLUSIONS: The flexibility of this system as an MRI-visible gene-expression reporter will enable many applications of serial, high-resolution imaging of gene expression for basic science and therapy development.


Assuntos
Encéfalo , Proteínas de Transporte de Cátions , Meios de Contraste , Imageamento por Ressonância Magnética , Animais , Camundongos , Imageamento por Ressonância Magnética/métodos , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Manganês , Genes Reporter , Dependovirus/genética , Neurônios/metabolismo
3.
Neuroimage ; 276: 120198, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37245561

RESUMO

Magnetic Resonance Imaging (MRI) resolution continues to improve, making it important to understand the cellular basis for different MRI contrast mechanisms. Manganese-enhanced MRI (MEMRI) produces layer-specific contrast throughout the brain enabling in vivo visualization of cellular cytoarchitecture, particularly in the cerebellum. Due to the unique geometry of the cerebellum, especially near the midline, 2D MEMRI images can be acquired from a relatively thick slice by averaging through areas of uniform morphology and cytoarchitecture to produce very high-resolution visualization of sagittal planes. In such images, MEMRI hyperintensity is uniform in thickness throughout the anterior-posterior axis of sagittal sections and is centrally located in the cerebellar cortex. These signal features suggested that the Purkinje cell layer, which houses the cell bodies of the Purkinje cells and the Bergmann glia, is the source of hyperintensity. Despite this circumstantial evidence, the cellular source of MRI contrast has been difficult to define. In this study, we quantified the effects of selective ablation of Purkinje cells or Bergmann glia on cerebellar MEMRI signal to determine whether signal could be assigned to one cell type. We found that the Purkinje cells, not the Bergmann glia, are the primary of source of the enhancement in the Purkinje cell layer. This cell-ablation strategy should be useful for determining the cell specificity of other MRI contrast mechanisms.


Assuntos
Cerebelo , Manganês , Humanos , Manganês/metabolismo , Cerebelo/patologia , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Neuroglia/metabolismo , Imageamento por Ressonância Magnética/métodos
4.
Hum Brain Mapp ; 43(5): 1766-1782, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34957633

RESUMO

Outliers in neuroimaging represent spurious data or the data of unusual phenotypes that deserve special attention such as clinical follow-up. Outliers have usually been detected in a supervised or semi-supervised manner for labeled neuroimaging cohorts. There has been much less work using unsupervised outlier detection on large unlabeled cohorts like the UK Biobank brain imaging dataset. Given its large sample size, rare imaging phenotypes within this unique cohort are of interest, as they are often clinically relevant and could be informative for discovering new processes. Here, we developed a two-level outlier detection and screening methodology to characterize individual outliers from the multimodal MRI dataset of more than 15,000 UK Biobank subjects. In primary screening, using brain ventricles, white matter, cortical thickness, and functional connectivity-based imaging phenotypes, every subject was parameterized with an outlier score per imaging phenotype. Outlier scores of these imaging phenotypes had good-to-excellent test-retest reliability, with the exception of resting-state functional connectivity (RSFC). Due to the low reliability of RSFC outlier scores, RSFC outliers were excluded from further individual-level outlier screening. In secondary screening, the extreme outliers (1,026 subjects) were examined individually, and those arising from data collection/processing errors were eliminated. A representative subgroup of 120 subjects from the remaining non-artifactual outliers were radiologically reviewed, and radiological findings were identified in 97.5% of them. This study establishes an unsupervised framework for investigating rare individual imaging phenotypes within a large neuroimaging cohort.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Neuroimagem/métodos , Fenótipo , Reprodutibilidade dos Testes
5.
Magn Reson Med ; 87(4): 1720-1730, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34775619

RESUMO

PURPOSE: The sensitivity of pseudo-continuous arterial spin labeling (PCASL) to off-resonance effects (ΔB0 ) is a major limitation at ultra-high field (≥7T). The aim of this study was to assess the effectiveness of different PCASL ΔB0 compensation methods at 7T and measure the labeling efficiency with off-resonance correction. THEORY AND METHODS: Phase offset errors induced by ΔB0 at the feeding arteries can be compensated by adding an extra radiofrequency (RF) phase increment and transverse gradient blips into the PCASL RF pulse train. The effectiveness of an average field correction (AVGcor), a vessel-specific field-map-based correction (FMcor) and a vessel-specific prescan-based correction (PScor) were compared at 7T. After correction, the PCASL labeling efficiency was directly measured in feeding arteries downstream from the labeling location. RESULTS: The perfusion signal was more uniform throughout the brain after off-resonance correction. Whole-brain average perfusion signal increased by a factor of 2.4, 2.5, and 2.1, respectively, with AVGcor, FMcor and PScor compared to acquisitions without correction. With off-resonance correction, the maximum labeling efficiency was ~0.68 at mean B1 (B1mean ) of 0.70 µT when using a mean gradient (Gmean ) of 0.25 mT/m. CONCLUSION: Either a prescan or a field map can be used to correct for off-resonance effects and retrieve a good brain perfusion signal at 7T. Although the three methods performed well in this study, FMcor may be better suited for patient studies because it accounted for vessel-specific ΔB0 variations. Further improvements in image quality will be possible by optimizing the labeling efficiency with advanced hardware and software while satisfying specific absorption rate constraints.


Assuntos
Artérias , Circulação Cerebrovascular , Artérias/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Humanos , Angiografia por Ressonância Magnética/métodos , Perfusão , Marcadores de Spin
6.
Proc Natl Acad Sci U S A ; 116(13): 6391-6396, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30846552

RESUMO

Central or peripheral injury causes reorganization of the brain's connections and functions. A striking change observed after unilateral stroke or amputation is a recruitment of bilateral cortical responses to sensation or movement of the unaffected peripheral area. The mechanisms underlying this phenomenon are described in a mouse model of unilateral whisker deprivation. Stimulation of intact whiskers yields a bilateral blood-oxygen-level-dependent fMRI response in somatosensory barrel cortex. Whole-cell electrophysiology demonstrated that the intact barrel cortex selectively strengthens callosal synapses to layer 5 neurons in the deprived cortex. These synapses have larger AMPA receptor- and NMDA receptor-mediated events. These factors contribute to a maximally potentiated callosal synapse. This potentiation occludes long-term potentiation, which could be rescued, to some extent, with prior long-term depression induction. Excitability and excitation/inhibition balance were altered in a manner consistent with cell-specific callosal changes and support a shift in the overall state of the cortex. This is a demonstration of a cell-specific, synaptic mechanism underlying interhemispheric cortical reorganization.


Assuntos
Corpo Caloso/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Encéfalo , Potenciação de Longa Duração/fisiologia , Imageamento por Ressonância Magnética/métodos , Camundongos , Receptores de N-Metil-D-Aspartato , Sensação/fisiologia , Privação Sensorial/fisiologia , Sinapses/fisiologia , Vibrissas/fisiologia
7.
J Neurosci ; 40(40): 7714-7723, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32913109

RESUMO

Injury induces synaptic, circuit, and systems reorganization. After unilateral amputation or stroke, this functional loss disrupts the interhemispheric interaction between intact and deprived somatomotor cortices to recruit deprived cortex in response to intact limb stimulation. This recruitment has been implicated in enhanced intact sensory function. In other patients, maladaptive consequences such as phantom limb pain can occur. We used unilateral whisker denervation in male and female mice to detect circuitry alterations underlying interhemispheric cortical reorganization. Enhanced synaptic strength from the intact cortex via the corpus callosum (CC) onto deep neurons in deprived primary somatosensory barrel cortex (S1BC) has previously been detected. It was hypothesized that specificity in this plasticity may depend on to which area these neurons projected. Increased connectivity to somatomotor areas such as contralateral S1BC, primary motor cortex (M1) and secondary somatosensory cortex (S2) may underlie beneficial adaptations, while increased connectivity to pain areas like anterior cingulate cortex (ACC) might underlie maladaptive pain phenotypes. Neurons from the deprived S1BC that project to intact S1BC were hyperexcitable, had stronger responses and reduced inhibitory input to CC stimulation. M1-projecting neurons also showed increases in excitability and CC input strength that was offset with enhanced inhibition. S2 and ACC-projecting neurons showed no changes in excitability or CC input. These results demonstrate that subgroups of output neurons undergo dramatic and specific plasticity after peripheral injury. The changes in S1BC-projecting neurons likely underlie enhanced reciprocal connectivity of S1BC after unilateral deprivation consistent with the model that interhemispheric takeover supports intact whisker processing.SIGNIFICANCE STATEMENT Amputation, peripheral injury, and stroke patients experience widespread alterations in neural activity after sensory loss. A hallmark of this reorganization is the recruitment of deprived cortical space which likely aids processing and thus enhances performance on intact sensory systems. Conversely, this recruitment of deprived cortical space has been hypothesized to underlie phenotypes like phantom limb pain and hinder recovery. A mouse model of unilateral denervation detected remarkable specificity in alterations in the somatomotor circuit. These changes underlie increased reciprocal connectivity between intact and deprived cortical hemispheres. This increased connectivity may help explain the enhanced intact sensory processing detected in humans.


Assuntos
Corpo Caloso/fisiologia , Plasticidade Neuronal , Córtex Somatossensorial/fisiologia , Vibrissas/inervação , Vias Aferentes/citologia , Vias Aferentes/fisiologia , Animais , Corpo Caloso/citologia , Feminino , Lateralidade Funcional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Córtex Somatossensorial/citologia
8.
Magn Reson Med ; 85(1): 506-517, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32638424

RESUMO

PURPOSE: Demonstrating multifield and inverse contrast switching of magnetocaloric high contrast ratio MRI labels that either have increasing or decreasing moment versus temperature slopes depending on the material at physiological temperatures and different MRI magnetic field strengths. METHODS: Two iron-rhodium samples of different purity (99% and 99.9%) and a lanthanum-iron-silicon sample were obtained from commercial vendors. Temperature and magnetic field-dependent magnetic moment measurements of the samples were performed on a vibrating sample magnetometer. Temperature-dependent MRI of different iron-rhodium and lanthanum-iron-silicon samples were performed on 3 different MRI scanners at 1 Tesla (T), 4.7T, and 7T. RESULTS: Sharp, first-order magnetic phase transition of each iron-rhodium sample at a physiologically relevant temperature (~37°C) but at different MRI magnetic fields (1T, 4.7T, and 7T, depending on the sample) showed clear image contrast changes in temperature-dependent MRI. Iron-rhodium and lanthanum-iron-silicon samples with sharp, first-order magnetic phase transitions at the same MRI field of 1T and physiological temperature of 37°C, but with positive and negative slope of magnetization versus temperature, respectively, showed clear inverse contrast image changes. Temperature-dependent MRI on individual microparticle samples of lanthanum-iron-silicon also showed sharp image contrast changes. CONCLUSION: Magnetocaloric materials of different purity and composition were demonstrated to act as diverse high contrast ratio switchable MRI contrast agents. Thus, we show that a range of magnetocaloric materials can be optimized for unique image contrast response under MRI-appropriate conditions at physiological temperatures and be controllably switched in situ.


Assuntos
Imageamento por Ressonância Magnética , Magnetismo , Ferro , Campos Magnéticos , Temperatura
9.
NMR Biomed ; 34(4): e4476, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33538073

RESUMO

Contrast agents improve clinical and basic research MRI. The manganese ion (Mn2+ ) is an essential, endogenous metal found in cells and it enhances MRI contrast because of its paramagnetic properties. Manganese-enhanced MRI (MEMRI) has been widely used to image healthy and diseased states of the body and the brain in a variety of animal models. There has also been some work in translating the useful properties of MEMRI to humans. Mn2+ accumulates in brain regions with high neural activity and enters cells via voltage-dependent channels that flux calcium (Ca2+ ). In addition, metal transporters for zinc (Zn2+ ) and iron (Fe2+ ) can also transport Mn2+ . There is also transfer through channels specific for Mn2+ . Although Mn2+ accumulates in many tissues including brain, the mechanisms and preferences of its mode of entry into cells are not well characterized. The current study used MRI on living organotypic hippocampal slice cultures to detect which transport mechanisms are preferentially used by Mn2+ to enter cells. The use of slice culture overcomes the presence of the blood brain barrier, which limits inferences made with studies of the intact brain in vivo. A range of Mn2+ concentrations were used and their effects on neural activity were assessed to avoid using interfering doses of Mn2+ . Zn2+ and Fe2+ were the most efficient competitors for Mn2+ uptake into the cultured slices, while the presence of Ca2+ or Ca2+ channel antagonists had a more moderate effect. Reducing slice activity via excitatory receptor antagonists was also effective at lowering Mn2+ uptake. In conclusion, a hierarchy of those agents which influence Mn2+ uptake was established to enhance understanding of how Mn2+ enters cells in a cultured slice preparation.


Assuntos
Hipocampo/metabolismo , Aumento da Imagem , Imageamento por Ressonância Magnética/métodos , Manganês/farmacocinética , Animais , Canais de Cálcio/fisiologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato/fisiologia , Razão Sinal-Ruído , Sinapses/fisiologia
10.
Cereb Cortex ; 30(11): 5885-5898, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32556241

RESUMO

Optogenetically driven manipulation of circuit-specific activity enables causality studies, but its global brain-wide effect is rarely reported. Here, we applied simultaneous functional magnetic resonance imaging (fMRI) and calcium recording with optogenetic activation of the corpus callosum (CC) connecting barrel cortices (BC). Robust positive BOLD was detected in the ipsilateral BC due to antidromic activity, spreading to the ipsilateral motor cortex (MC), and posterior thalamus (PO). In the orthodromic target, positive BOLD was reliably evoked by 2 Hz light pulses, whereas 40 Hz light pulses led to reduced calcium, indicative of CC-mediated inhibition. This presumed optogenetic CC-mediated inhibition was further elucidated by pairing light pulses with whisker stimulation at varied interstimulus intervals. Whisker-induced positive BOLD and calcium signals were reduced at intervals of 50/100 ms. The calcium-amplitude-modulation-based correlation with whole-brain fMRI signal revealed that the inhibitory effects spread to contralateral BC, ipsilateral MC, and PO. This work raises the need for fMRI to elucidate the brain-wide network activation in response to optogenetic stimulation.


Assuntos
Mapeamento Encefálico/métodos , Corpo Caloso/fisiologia , Imageamento por Ressonância Magnética/métodos , Optogenética/métodos , Animais , Córtex Cerebral/fisiologia , Rede Nervosa/fisiologia , Ratos
11.
Neuroimage ; 210: 116554, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31972283

RESUMO

Spontaneous brain activity has been widely used to map brain connectivity. The interactions between task-evoked brain responses and the spontaneous cortical oscillations, especially within the low frequency range of ~0.1 â€‹Hz, are not fully understood. Trial-to-trial variabilities in brain's response to sensory stimuli and the ability for brain to detect under noisy conditions suggest an appreciable impact of the brain state. Using a multimodality imaging platform, we simultaneously imaged neuronal Ca2+ and cerebral hemodynamics at baseline and in response to single-pulse forepaw stimuli in rat's somatosensory cortex. The high sensitivity of this system enables detection of responses to very weak and strong stimuli and real time determination of low frequency oscillations without averaging. Results show that the ongoing neuronal oscillations inversely modulate Ca2+ transients evoked by sensory stimuli. High intensity stimuli reset the spontaneous neuronal oscillations to an unpreferable excitability following the stimulus. Cerebral hemodynamic responses also inversely interact with the spontaneous hemodynamic oscillations, correlating with the neuronal Ca2+ transient changes. The results reveal competing interactions between spontaneous oscillations and stimulation-evoked brain activities in somatosensory cortex and the resultant hemodynamics.


Assuntos
Ondas Encefálicas/fisiologia , Cálcio , Potenciais Somatossensoriais Evocados/fisiologia , Neuroimagem Funcional/métodos , Acoplamento Neurovascular/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Membro Anterior , Imuno-Histoquímica , Masculino , Imagem Multimodal , Imagem Óptica , Estimulação Física , Ratos , Ratos Sprague-Dawley
12.
Neuroimage ; 223: 117285, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32828923

RESUMO

PURPOSE: To perform magnetic resonance microscopy (MRM) on human cortex and a cortical lesion as well as the adjacent normal appearing white matter. To shed light on the origins of MRI contrast by comparison with histochemical and immunostaining. METHODS: 3D MRM at a nominal isotropic resolution of 15 and 18 µm was performed on 2 blocks of tissue from the brain of a 77-year-old man who had MS for 47 years. One block contained normal appearing cortical gray matter (CN block) and adjacent normal appearing white matter (NAWM), and the other also included a cortical lesion (CL block). Postmortem ex-vivo MRI was performed at 11.7T using a custom solenoid coil and T2*-weighted 3D GRE sequence. Histochemical and immunostaining were done after paraffin embedding for iron, myelin, oligodendrocytes, neurons, blood vessels, macrophages and microglia, and astrocytes. RESULTS: MRM could identify individual iron-laden oligodendrocytes with high sensitivity (70% decrease in signal compared to surrounding) in CN and CL blocks, as well as some iron-laden activated macrophages and microglia. Iron-deficient oligodendrocytes seemed to cause relative increase in MRI signal within the cortical lesion. High concentration of myelin in the white matter was primarily responsible for its hypointense appearance relative to the cortex, however, signal variations within NAWM could be attributed to changes in density of iron-laden oligodendrocytes. CONCLUSION: Changes in iron accumulation within cells gave rise to imaging contrast seen between cortical lesions and normal cortex, as well as the patchy signal in NAWM. Densely packed myelin and collagen deposition also contributed to MRM signal changes. Even though we studied only one block each from normal appearing and cortical lesions, such studies can help better understand the origins of histopathological and microstructural correlates of MRI signal changes in multiple sclerosis and contextualize the interpretation of lower-resolution in vivo MRI scans.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Técnicas de Preparação Histocitológica/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Neurônios/patologia , Idoso , Química Encefálica , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Ferro , Imageamento por Ressonância Magnética , Masculino , Microscopia/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
13.
Nature ; 505(7482): 223-8, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24317693

RESUMO

Traumatic brain injury (TBI) is increasingly appreciated to be highly prevalent and deleterious to neurological function. At present, no effective treatment options are available, and little is known about the complex cellular response to TBI during its acute phase. To gain insights into TBI pathogenesis, we developed a novel murine closed-skull brain injury model that mirrors some pathological features associated with mild TBI in humans and used long-term intravital microscopy to study the dynamics of the injury response from its inception. Here we demonstrate that acute brain injury induces vascular damage, meningeal cell death, and the generation of reactive oxygen species (ROS) that ultimately breach the glial limitans and promote spread of the injury into the parenchyma. In response, the brain elicits a neuroprotective, purinergic-receptor-dependent inflammatory response characterized by meningeal neutrophil swarming and microglial reconstitution of the damaged glial limitans. We also show that the skull bone is permeable to small-molecular-weight compounds, and use this delivery route to modulate inflammation and therapeutically ameliorate brain injury through transcranial administration of the ROS scavenger, glutathione. Our results shed light on the acute cellular response to TBI and provide a means to locally deliver therapeutic compounds to the site of injury.


Assuntos
Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Encefalite/patologia , Encefalite/prevenção & controle , Administração Tópica , Animais , Antioxidantes/administração & dosagem , Antioxidantes/uso terapêutico , Astrócitos/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Lesões Encefálicas/diagnóstico , Lesões Encefálicas/tratamento farmacológico , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Encefalite/complicações , Encefalite/tratamento farmacológico , Escala de Coma de Glasgow , Glutationa/administração & dosagem , Glutationa/uso terapêutico , Humanos , Hemorragias Intracranianas/complicações , Hemorragias Intracranianas/diagnóstico , Masculino , Meninges/efeitos dos fármacos , Meninges/patologia , Camundongos , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/fisiologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Neutrófilos/efeitos dos fármacos , Neutrófilos/fisiologia , Antagonistas do Receptor Purinérgico P2/administração & dosagem , Antagonistas do Receptor Purinérgico P2/farmacologia , Antagonistas do Receptor Purinérgico P2/uso terapêutico , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Crânio/metabolismo
15.
Radiology ; 293(2): 384-393, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31573398

RESUMO

Background Commercial low-field-strength MRI systems are generally not equipped with state-of-the-art MRI hardware, and are not suitable for demanding imaging techniques. An MRI system was developed that combines low field strength (0.55 T) with high-performance imaging technology. Purpose To evaluate applications of a high-performance low-field-strength MRI system, specifically MRI-guided cardiovascular catheterizations with metallic devices, diagnostic imaging in high-susceptibility regions, and efficient image acquisition strategies. Materials and Methods A commercial 1.5-T MRI system was modified to operate at 0.55 T while maintaining high-performance hardware, shielded gradients (45 mT/m; 200 T/m/sec), and advanced imaging methods. MRI was performed between January 2018 and April 2019. T1, T2, and T2* were measured at 0.55 T; relaxivity of exogenous contrast agents was measured; and clinical applications advantageous at low field were evaluated. Results There were 83 0.55-T MRI examinations performed in study participants (45 women; mean age, 34 years ± 13). On average, T1 was 32% shorter, T2 was 26% longer, and T2* was 40% longer at 0.55 T compared with 1.5 T. Nine metallic interventional devices were found to be intrinsically safe at 0.55 T (<1°C heating) and MRI-guided right heart catheterization was performed in seven study participants with commercial metallic guidewires. Compared with 1.5 T, reduced image distortion was shown in lungs, upper airway, cranial sinuses, and intestines because of improved field homogeneity. Oxygen inhalation generated lung signal enhancement of 19% ± 11 (standard deviation) at 0.55 T compared with 7.6% ± 6.3 at 1.5 T (P = .02; five participants) because of the increased T1 relaxivity of oxygen (4.7e-4 mmHg-1sec-1). Efficient spiral image acquisitions were amenable to low field strength and generated increased signal-to-noise ratio compared with Cartesian acquisitions (P < .02). Representative imaging of the brain, spine, abdomen, and heart generated good image quality with this system. Conclusion This initial study suggests that high-performance low-field-strength MRI offers advantages for MRI-guided catheterizations with metal devices, MRI in high-susceptibility regions, and efficient imaging. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Grist in this issue.


Assuntos
Cateterismo , Aumento da Imagem/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Adulto , Artefatos , Cateterismo Cardíaco/instrumentação , Meios de Contraste , Desenho de Equipamento , Feminino , Humanos , Imagem por Ressonância Magnética Intervencionista/instrumentação , Metais , Razão Sinal-Ruído
16.
Nat Methods ; 13(4): 337-40, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26855362

RESUMO

Magnetic resonance imaging (MRI) sensitivity approaches vessel specificity. We developed a single-vessel functional MRI (fMRI) method to image the contribution of vascular components to blood oxygenation level-dependent (BOLD) and cerebral blood volume (CBV) fMRI signal. We mapped individual vessels penetrating the rat somatosensory cortex with 100-ms temporal resolution by MRI with sensory or optogenetic stimulation. The BOLD signal originated primarily from venules, and the CBV signal from arterioles. The single-vessel fMRI method and its combination with optogenetics provide a platform for mapping the hemodynamic signal through the neurovascular network with specificity at the level of individual arterioles and venules.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Optogenética/métodos , Oxigênio/sangue , Córtex Somatossensorial/fisiologia , Animais , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Hemodinâmica , Ratos , Córtex Somatossensorial/irrigação sanguínea , Córtex Somatossensorial/citologia
17.
Magn Reson Med ; 81(4): 2238-2246, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30474159

RESUMO

PURPOSE: To develop switchable and tunable labels with high contrast ratio for MRI using magnetocaloric materials that have sharp first-order magnetic phase transitions at physiological temperatures and typical MRI magnetic field strengths. METHODS: A prototypical magnetocaloric material iron-rhodium (FeRh) was prepared by melt mixing, high-temperature annealing, and ice-water quenching. Temperature- and magnetic field-dependent magnetization measurements of wire-cut FeRh samples were performed on a vibrating sample magnetometer. Temperature-dependent MRI of FeRh samples was performed on a 4.7T MRI. RESULTS: Temperature-dependent MRI clearly demonstrated image contrast changes due to the sharp magnetic state transition of the FeRh samples in the MRI magnetic field (4.7T) and at a physiologically relevant temperature (~37°C). CONCLUSION: A magnetocaloric material, FeRh, was demonstrated to act as a high contrast ratio switchable MRI contrast agent due to its sharp first-order magnetic phase transition in the DC magnetic field of MRI and at physiologically relevant temperatures. A wide range of magnetocaloric materials are available that can be tuned by materials science techniques to optimize their response under MRI-appropriate conditions and be controllably switched in situ with temperature, magnetic field, or a combination of both.


Assuntos
Meios de Contraste/química , Campos Magnéticos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Temperatura Alta , Ferro , Magnetismo , Teste de Materiais , Movimento (Física) , Ródio , Temperatura , Vibração
18.
Neuroimage ; 165: 251-264, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28974452

RESUMO

Cerebral hemodynamics are modulated in response to changes in neuronal activity, a process termed neurovascular coupling (NVC), which can be disrupted by neuropsychiatric diseases (e.g., stroke, Alzheimer's disease). Thus, there is growing interest to image long-term NVC dynamics with high spatiotemporal resolutions. Here, by combining the use of a genetically-encoded calcium indicator with optical techniques, we develop a longitudinal multimodal optical imaging platform (MIP) that enabled time-lapse tracking of NVC over a relatively large field of view in the mouse somatosensory cortex at single cell and single vessel resolutions. Specifically, GCaMP6f was used as marker of neuronal activity, which along with MIP allowed us to simultaneously measure the changes in neuronal [Ca2+]i fluorescence, cerebral blood flow velocity (CBFv) and hemodynamics longitudinally for more than eight weeks. We show that [Ca2+]i fluorescence was detectable one week post viral injection and the damage to local microvasculature and perfusion recovered two weeks after injection. By three weeks post viral injection, maximal neuronal and CBFv responses to hindpaw stimulations were observed. Moreover, single neuronal activation in response to hindpaw stimulation was consistently recorded, followed by ∼2 s delayed dilation of contiguous microvessels. Additionally, resting-state spontaneous neuronal and hemodynamic oscillations were detectable throughout the eight weeks of study. Our results demonstrate the capability of MIP for longitudinal investigation of the organization and plasticity of the neurovascular network during resting state and during stimulation-evoked neuronal activation at high spatiotemporal resolutions.


Assuntos
Imageamento Tridimensional/métodos , Neuroimagem/métodos , Acoplamento Neurovascular , Imagem Óptica/métodos , Córtex Somatossensorial/diagnóstico por imagem , Animais , Cálcio/análise , Hemodinâmica/fisiologia , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional/instrumentação , Camundongos , Camundongos Endogâmicos C57BL , Neuroimagem/instrumentação , Imagem Óptica/instrumentação
19.
Magn Reson Med ; 80(5): 2288-2298, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29603378

RESUMO

PURPOSE: To develop an implantable wireless coil with parametric amplification capabilities for time-domain electron paramagnetic resonance (EPR) spectroscopy operating at 300 MHz. METHODS: The wireless coil and lithium phthalocyanine (LiPc), a solid paramagnetic probe, were each embedded individually in a biocompatible polymer polydimethoxysiloxane (PDMS). EPR signals from the LiPc embedded in PDMS (LiPc/PDMS) were generated by a transmit-receive surface coil tuned to 300 MHz. Parametric amplification was configured with an external pumping coil tuned to 600 MHz and placed between the surface coil resonator and the wireless coil. RESULTS: Phantom studies showed significant enhancement in signal to noise using the pumping coil. However, no influence of the pumping coil on the oxygen-dependent EPR spectral linewidth of LiPc/PDMS was observed, suggesting the validity of parametric amplification of EPR signals for oximetry by implantation of the encapsulated wireless coil and LiPc/PDMS in deep regions of live objects. In vivo studies demonstrate the feasibility of this approach to longitudinally monitor tissue pO2 in vivo and also monitor acute changes in response to pharmacologic challenges. The encapsulated wireless coil and LiPc/PDMS engendered no host immune response when implanted for ∼3 weeks and were found to be well tolerated. CONCLUSIONS: This approach may find applications for monitoring tissue oxygenation to better understand the pathophysiology associated with wound healing, organ transplantation, and ischemic diseases.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/instrumentação , Oximetria/instrumentação , Tecnologia sem Fio/instrumentação , Animais , Desenho de Equipamento , Feminino , Camundongos , Camundongos Nus , Imagens de Fantasmas , Próteses e Implantes , Cicatrização
20.
Neuroimage ; 156: 146-154, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28506873

RESUMO

There has been a growing interest in the use of manganese-enhanced MRI (MEMRI) for neuronal tract tracing in mammals, especially in rodents. For this MEMRI application, manganese solutions are usually directly injected into specific brain regions. Recently it was reported that manganese ions can diffuse through intact rat skull. Here the local manganese concentrations in the brain tissue after transcranial manganese application were quantified and the effectiveness of tracing from the area under the skull where delivery occurred was determined. It was established that transcranially applied manganese yields brain tissue enhancement dependent on the location of application on the skull and that manganese that enters the brain transcranially can trace to deeper brain areas.


Assuntos
Cloretos/administração & dosagem , Cloretos/farmacocinética , Imageamento por Ressonância Magnética/métodos , Compostos de Manganês/administração & dosagem , Compostos de Manganês/farmacocinética , Marcadores do Trato Nervoso/administração & dosagem , Marcadores do Trato Nervoso/farmacocinética , Animais , Encéfalo/diagnóstico por imagem , Meios de Contraste/administração & dosagem , Meios de Contraste/farmacocinética , Difusão , Aumento da Imagem , Processamento de Imagem Assistida por Computador/métodos , Masculino , Ratos , Ratos Sprague-Dawley , Crânio , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA