Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 54: 1-10, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30833194

RESUMO

Co-Tm nano-spinel ferrite with chemical formula CoTmxFe2-xO4 (0.0 ≤ x ≤ 0.08) NPs were prepared via sonochemical approach. X-ray powder diffraction patterns, microscopic images (SEM and TEM) and infrared spectra proved the formation of Co spinel ferrite. The effect of Tm3+ substituted on spinal structure was evaluated by lattice parameters, tetrahedral and octahedral bond length and cationic distribution. The band gap energy (Eg) of samples were estimated by performing UV-Vis percent diffuse reflectance (% DR) and applying the Kubelka-Munk theory. Eg values are in an interval between 1.33 eV and 1.64 eV. The analyses of magnetization were performed at room (300 K; RT) and low (10 K) temperatures. Different magnetic parameters including coercivity Hc, saturation magnetization Ms, remanence Mr, squareness ratio (SQR = Mr/Ms) and magnetic moment nB were deduced and discussed. The results showed superparamagnetic (SPM) nature at RT for x = 0.00 and 0.02 samples. However, the other products exhibit ferromagnetic (FM) nature. At 10 K, all synthesized NPs display FM behavior. An amazing increase in the magnitudes of Ms, Mr and Hc was observed at 10 K in comparison to RT, which is principally due to the reduced thermal fluctuations of magnetic moments at lower temperatures. The Tm3+ substitution affects considerably the magnetizations data. An enhancement in the Ms, Mr, and nB was detected on increasing the Tm3+ concentration. The SQR values at RT are found to be smaller than 0.5 postulating a single domain nature with uniaxial anisotropy for all produced ferrites. However, SQRs are in the range 0.66-0.76 at 10 K, suggesting the multi magnetic domain at low temperature, except the x = 0.02 product where the SQR = 0.47 indicating the single magnetic domain. The obtained magnetic results were investigated deeply with relation to structural and microstructural properties.

2.
Ultrason Sonochem ; 58: 104621, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31450366

RESUMO

Magnetic, optic and microstructural properties of ultrasonically synthesized CoEuxFe2-xO4 (x ≤ 0.1) nanoferrites (NFs) have been examined in this study. After sonochemical synthesis, XRD and FT-IR analyses confirmed the purity, the structure (cubic spinel structure and Fd3m space group) and the spectral properties of the spinel ferrite samples. The spherical morphology and chemical compositions of the products were observed via transmission and scanning electron microscopes along with EDX and elemental mapping. Percent diffuse reflectance (%DR) was used for optical investigation. Optical band gaps (Eg) were estimated utilizing Kubelka-Munk theory and Tauc equation. Eg values are in a narrow band of 1.34 to 1.44 eV. The magnetic parameters like Ms (saturation magnetization), SQR = Mr/Ms (squareness ratio), nB (magnetic moment), Hc (coercivity) and Mr (remanence) have been evaluated by analyzing measurements of magnetization versus magnetic field performed at room (RT; T = 300 K) and low (T = 10 K) temperatures. It is showed that the different produced CoEuxFe2-xO4 (0.00 ≤ x ≤ 0.10) nanospinel ferrites present superparamagnetic (SPM) nature at RT. At low temperature, the various produced CoEuxFe2-xO4 (x ≤ 0.08) nanospinel ferrites display ferrimagnetic (FM) nature. With exception, the x = 0.10 sample exhibit SPM behavior at T = 10 K. It is noticed that the Eu3+ substitutions alter in a significant way on the magnetic data. A decreasing trend in the Ms, Mr and nB values was noted with Eu3+ substitutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA