Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(D1): D649-D655, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29145629

RESUMO

The Reactome Knowledgebase (https://reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism, and other cellular processes as an ordered network of molecular transformations-an extended version of a classic metabolic map, in a single consistent data model. Reactome functions both as an archive of biological processes and as a tool for discovering unexpected functional relationships in data such as gene expression profiles or somatic mutation catalogues from tumor cells. To support the continued brisk growth in the size and complexity of Reactome, we have implemented a graph database, improved performance of data analysis tools, and designed new data structures and strategies to boost diagram viewer performance. To make our website more accessible to human users, we have improved pathway display and navigation by implementing interactive Enhanced High Level Diagrams (EHLDs) with an associated icon library, and subpathway highlighting and zooming, in a simplified and reorganized web site with adaptive design. To encourage re-use of our content, we have enabled export of pathway diagrams as 'PowerPoint' files.


Assuntos
Bases de Conhecimento , Redes e Vias Metabólicas , Gráficos por Computador , Bases de Dados de Compostos Químicos , Bases de Dados de Proteínas , Humanos , Internet , Anotação de Sequência Molecular , Transdução de Sinais , Interface Usuário-Computador
2.
PLoS Comput Biol ; 14(1): e1005968, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29377902

RESUMO

Reactome is a free, open-source, open-data, curated and peer-reviewed knowledgebase of biomolecular pathways. One of its main priorities is to provide easy and efficient access to its high quality curated data. At present, biological pathway databases typically store their contents in relational databases. This limits access efficiency because there are performance issues associated with queries traversing highly interconnected data. The same data in a graph database can be queried more efficiently. Here we present the rationale behind the adoption of a graph database (Neo4j) as well as the new ContentService (REST API) that provides access to these data. The Neo4j graph database and its query language, Cypher, provide efficient access to the complex Reactome data model, facilitating easy traversal and knowledge discovery. The adoption of this technology greatly improved query efficiency, reducing the average query time by 93%. The web service built on top of the graph database provides programmatic access to Reactome data by object oriented queries, but also supports more complex queries that take advantage of the new underlying graph-based data storage. By adopting graph database technology we are providing a high performance pathway data resource to the community. The Reactome graph database use case shows the power of NoSQL database engines for complex biological data types.


Assuntos
Biologia Computacional/métodos , Bases de Dados Factuais , Armazenamento e Recuperação da Informação , Gráficos por Computador , Humanos , Internet , Bases de Conhecimento , Software , Biologia de Sistemas , Interface Usuário-Computador
3.
Nucleic Acids Res ; 44(D1): D481-7, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26656494

RESUMO

The Reactome Knowledgebase (www.reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations-an extended version of a classic metabolic map, in a single consistent data model. Reactome functions both as an archive of biological processes and as a tool for discovering unexpected functional relationships in data such as gene expression pattern surveys or somatic mutation catalogues from tumour cells. Over the last two years we redeveloped major components of the Reactome web interface to improve usability, responsiveness and data visualization. A new pathway diagram viewer provides a faster, clearer interface and smooth zooming from the entire reaction network to the details of individual reactions. Tool performance for analysis of user datasets has been substantially improved, now generating detailed results for genome-wide expression datasets within seconds. The analysis module can now be accessed through a RESTFul interface, facilitating its inclusion in third party applications. A new overview module allows the visualization of analysis results on a genome-wide Reactome pathway hierarchy using a single screen page. The search interface now provides auto-completion as well as a faceted search to narrow result lists efficiently.


Assuntos
Bases de Dados de Compostos Químicos , Redes e Vias Metabólicas , Expressão Gênica , Humanos , Bases de Conhecimento , Proteínas/metabolismo , Transdução de Sinais , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA