Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Virol ; 97(4): e0183322, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971561

RESUMO

Noroviruses are the leading cause of outbreaks of acute gastroenteritis. These viruses usually interact with histo-blood group antigens (HBGAs), which are considered essential cofactors for norovirus infection. This study structurally characterizes nanobodies developed against the clinically important GII.4 and GII.17 noroviruses with a focus on the identification of novel nanobodies that efficiently block the HBGA binding site. Using X-ray crystallography, we have characterized nine different nanobodies that bound to the top, side, or bottom of the P domain. The eight nanobodies that bound to the top or side of the P domain were mainly genotype specific, while one nanobody that bound to the bottom cross-reacted against several genotypes and showed HBGA blocking potential. The four nanobodies that bound to the top of the P domain also inhibited HBGA binding, and structural analysis revealed that these nanobodies interacted with several GII.4 and GII.17 P domain residues that commonly engaged HBGAs. Moreover, these nanobody complementarity-determining regions (CDRs) extended completely into the cofactor pockets and would likely impede HBGA engagement. The atomic level information for these nanobodies and their corresponding binding sites provide a valuable template for the discovery of additional "designer" nanobodies. These next-generation nanobodies would be designed to target other important genotypes and variants, while maintaining cofactor interference. Finally, our results clearly demonstrate for the first time that nanobodies directly targeting the HBGA binding site can function as potent norovirus inhibitors. IMPORTANCE Human noroviruses are highly contagious and a major problem in closed institutions, such as schools, hospitals, and cruise ships. Reducing norovirus infections is challenging on multiple levels and includes the frequent emergence of antigenic variants, which complicates designing effective, broadly reactive capsid therapeutics. We successfully developed and characterized four norovirus nanobodies that bound at the HBGA pockets. Compared with previously developed norovirus nanobodies that inhibited HBGA through disrupted particle stability, these four novel nanobodies directly inhibited HBGA engagement and interacted with HBGA binding residues. Importantly, these new nanobodies specifically target two genotypes that have caused the majority of outbreaks worldwide and consequently would have an enormous benefit if they could be further developed as norovirus therapeutics. To date, we have structurally characterized 16 different GII nanobody complexes, a number of which block HBGA binding. These structural data could be used to design multivalent nanobody constructs with improved inhibition properties.


Assuntos
Antígenos de Grupos Sanguíneos , Norovirus , Anticorpos de Domínio Único , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/metabolismo , Norovirus/efeitos dos fármacos , Norovirus/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/farmacologia , Sítios de Ligação/efeitos dos fármacos , Reações Cruzadas , Termodinâmica , Cristalografia por Raios X , Domínios Proteicos , Ligação Proteica , Modelos Moleculares
2.
J Virol ; 94(13)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32321816

RESUMO

Human norovirus frequently causes outbreaks of acute gastroenteritis. Although discovered more than five decades ago, antiviral development has, until recently, been hampered by the lack of a reliable human norovirus cell culture system. Nevertheless, a lot of pathogenesis studies were accomplished using murine norovirus (MNV), which can be grown routinely in cell culture. In this study, we analyzed a sizeable library of nanobodies that were raised against the murine norovirus virion with the main purpose of developing nanobody-based inhibitors. We discovered two types of neutralizing nanobodies and analyzed the inhibition mechanisms using X-ray crystallography, cryo-electron microscopy (cryo-EM), and cell culture techniques. The first type bound on the top region of the protruding (P) domain. Interestingly, this nanobody binding region closely overlapped the MNV receptor-binding site and collectively shared numerous P domain-binding residues. In addition, we showed that these nanobodies competed with the soluble receptor, and this action blocked virion attachment to cultured cells. The second type bound at a dimeric interface on the lower side of the P dimer. We discovered that these nanobodies disrupted a structural change in the capsid associated with binding cofactors (i.e., metal cations/bile acid). Indeed, we found that capsids underwent major conformational changes following addition of Mg2+ or Ca2+ Ultimately, these nanobodies directly obstructed a structural modification reserved for a postreceptor attachment stage. Altogether, our new data show that nanobody-based inhibition could occur by blocking functional and structural capsid properties.IMPORTANCE This research discovered and analyzed two different types of MNV-neutralizing nanobodies. The top-binding nanobodies sterically inhibited the receptor-binding site, whereas the dimeric-binding nanobodies interfered with a structural modification associated with cofactor binding. Moreover, we found that the capsid contained a number of vulnerable regions that were essential for viral replication. In fact, the capsid appeared to be organized in a state of flux, which could be important for cofactor/receptor-binding functions. Blocking these capsid-binding events with nanobodies directly inhibited essential capsid functions. Moreover, a number of MNV-specific nanobody binding epitopes were comparable to human norovirus-specific nanobody inhibitors. Therefore, this additional structural and inhibition information could be further exploited in the development of human norovirus antivirals.


Assuntos
Infecções por Caliciviridae/terapia , Norovirus/genética , Anticorpos de Domínio Único/farmacologia , Sítios de Ligação/genética , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Epitopos/metabolismo , Gastroenterite/metabolismo , Norovirus/imunologia , Norovirus/patogenicidade , Ligação Proteica/genética , Conformação Proteica , Domínios Proteicos/genética , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/metabolismo , Vírion/metabolismo
3.
J Virol ; 93(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30355683

RESUMO

A recently developed human norovirus cell culture system revealed that the presence of bile enhanced or was an essential requirement for the growth of certain genotypes. Before this discovery, histo-blood group antigens (HBGAs) were the only well-studied cofactor known for human noroviruses, and there was evidence that several genotypes poorly bound HBGAs. Therefore, the purpose of this study was to investigate how human norovirus capsids interact with bile acids. We found that bile acids had low-micromolar affinities for GII.1, GII.10, and GII.19 capsids but did not bind GI.1, GII.3, GII.4, or GII.17. We showed that bile acid bound at a partially conserved pocket on the norovirus capsid-protruding (P) domain using X-ray crystallography. Amino acid sequence alignment and structural analysis delivered an explanation of selective bile acid binding. Intriguingly, we discovered that binding of the bile acid was the critical step to stabilize several P domain loops that optimally placed an essential amino acid side chain (Asp375) to bind HBGAs in an otherwise HBGA nonbinder (GII.1). Furthermore, bile acid enhanced HBGA binding for a known HBGA binder (GII.10). Altogether, these new data suggest that bile acid functions as a loop-stabilizing regulator and enhancer of HBGA binding for certain norovirus genotypes.IMPORTANCE Given that human norovirus virions likely interact with bile acid during a natural infection, our evidence that an HBGA nonbinder (GII.1) can be converted to an HBGA binder after bile acid binding is of major significance. Our data provide direct evidence that, like HBGAs, bile acid interaction on the capsid is an important cofactor for certain genotypes. However, more unanswered questions seem to arise from these new discoveries. For example, is there an association between the bile acid requirement and the prevalence of certain genotypes? That is, the GII.1 and GII.10 (bile acid binders) genotypes rarely caused outbreaks, whereas the GII.4 and GII.17 genotypes (bile acid nonbinders) were responsible for large epidemics. Therefore, it seems plausible that certain genotypes require bile acids, whereas others have modified their bile acid requirements on the capsid.


Assuntos
Ácidos e Sais Biliares/metabolismo , Antígenos de Grupos Sanguíneos/metabolismo , Proteínas do Capsídeo/metabolismo , Capsídeo/química , Sítios de Ligação , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Norovirus , Ligação Proteica , Conformação Proteica , Estabilidade Proteica
4.
J Virol ; 93(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541855

RESUMO

Temporal changes in the GII.4 human norovirus capsid sequences occasionally result in the emergence of genetic variants capable of causing new epidemics. The persistence of GII.4 is believed to be associated with the recognition of numerous histo-blood group antigen (HBGA) types and antigenic drift. We found that one of the earliest known GII.4 isolates (in 1974) and a more recent epidemic GII.4 variant (in 2012) had varied norovirus-specific monoclonal antibody (MAb) reactivities but similar HBGA binding profiles. To better understand the binding interaction of one MAb (10E9) that had varied reactivity with these GII.4 variants, we determined the X-ray crystal structure of the NSW-2012 GII.4 P domain 10E9 Fab complex. We showed that the 10E9 Fab interacted with conserved and variable residues, which could be associated with antigenic drift. Interestingly, the 10E9 Fab binding pocket partially overlapped the HBGA pocket and had direct competition for conserved HBGA binding residues (i.e., Arg345 and Tyr444). Indeed, the 10E9 MAb blocked norovirus virus-like particles (VLPs) from binding to several sources of HBGAs. Moreover, the 10E9 antibody completely abolished virus replication in the human norovirus intestinal enteroid cell culture system. Our new findings provide the first direct evidence that competition for GII.4 HBGA binding residues and steric obstruction could lead to norovirus neutralization. On the other hand, the 10E9 MAb recognized residues flanking the HBGA pocket, which are often substituted as the virus evolves. This mechanism of antigenic drift likely influences herd immunity and impedes the possibility of acquiring broadly reactive HBGA-blocking antibodies.IMPORTANCE The emergence of new epidemic GII.4 norovirus variants is thought to be associated with changes in antigenicity and HBGA binding capacity. Here, we show that HBGA binding profiles remain unchanged between the 1974 and 2012 GII.4 variants, whereas these variants showed various levels of reactivity against a panel of GII.4 MAbs. We identified a MAb that bound at the HBGA pocket, blocked norovirus VLPs from binding to HBGAs, and neutralized norovirus virions in the cell culture system. Raised against a GII.4 2006 strain, this MAb was unreactive to a GII.4 1974 isolate but was able to neutralize the newer 2012 strain, which has important implications for vaccine design. Altogether, these new findings suggest that the amino acid variations surrounding the HBGA pocket lead to temporal changes in antigenicity without affecting the ability of GII.4 variants to bind HBGAs, which are known cofactors for infection.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Variação Antigênica/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Norovirus/imunologia , Sequência de Aminoácidos/genética , Variação Antigênica/genética , Sítios de Ligação/genética , Sítios de Ligação/imunologia , Sítios de Ligação de Anticorpos/imunologia , Infecções por Caliciviridae/imunologia , Capsídeo/imunologia , Linhagem Celular , Cristalografia por Raios X , Humanos , Imunidade Coletiva/genética , Imunidade Coletiva/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Modelos Moleculares , Norovirus/genética , Conformação Proteica , Alinhamento de Sequência
5.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30602609

RESUMO

Human norovirus infections are a major disease burden. In this study, we analyzed three new norovirus-specific Nanobodies that interacted with the prototype human norovirus (i.e., genogroup I genotype 1 [GI.1]). We showed that the Nanobodies bound on the side (Nano-7 and Nano-62) and top (Nano-94) of the capsid-protruding (P) domain using X-ray crystallography. Nano-7 and Nano-62 bound at a similar region on the P domain, but the orientations of these two Nanobodies clashed with the shell (S) domain and neighboring P domains on intact particles. This finding suggested that the P domains on the particles should shift in order for Nano-7 and Nano-62 to bind to intact particles. Interestingly, both Nano-7 and Nano-94 were capable of blocking norovirus virus-like particles (VLPs) from binding to histo-blood group antigens (HBGAs), which are important cofactors for norovirus infection. Previously, we showed that the GI.1 HBGA pocket could be blocked with the soluble human milk oligosaccharide 2-fucosyllactose (2'FL). In the current study, we showed that a combined treatment of Nano-7 or Nano-94 with 2'FL enhanced the blocking potential with an additive (Nano-7) or synergistic (Nano-94) effect. We also found that GII Nanobodies with 2'FL also enhanced inhibition. The Nanobody inhibition likely occurred by different mechanisms, including particle aggregation or particle disassembly, whereas 2'FL blocked the HBGA binding site. Overall, these new data showed that the positive effect of the addition of 2'FL was not limited to a single mode of action of Nanobodies or to a single norovirus genogroup.IMPORTANCE The discovery of vulnerable regions on norovirus particles is instrumental in the development of effective inhibitors, particularly for GI noroviruses that are genetically diverse. Analysis of these GI.1-specific Nanobodies has shown that similar to GII norovirus particles, the GI particles have vulnerable regions. The only known cofactor region, the HBGA binding pocket, represents the main target for inhibition. With a combination treatment, i.e., the addition of Nano-7 or Nano-94 with 2'FL, the effect of inhibition was increased. Therefore, combination drug treatments might offer a better approach to combat norovirus infections, especially since the GI genotypes are highly diverse and are continually changing the capsid landscape, and few conserved epitopes have so far been identified.


Assuntos
Infecções por Caliciviridae/imunologia , Norovirus/imunologia , Anticorpos de Domínio Único/imunologia , Sítios de Ligação/imunologia , Antígenos de Grupos Sanguíneos/imunologia , Capsídeo/imunologia , Proteínas do Capsídeo/imunologia , Cristalografia por Raios X/métodos , Epitopos/imunologia , Escherichia coli/virologia , Ligação Proteica/imunologia
6.
J Virol ; 92(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29563286

RESUMO

Human noroviruses are the leading cause of acute gastroenteritis in humans. Noroviruses also infect animals, such as cows, mice, cats, and dogs. How noroviruses bind and enter host cells is still incompletely understood. Recently, the type I transmembrane protein CD300lf was identified as the murine norovirus receptor, yet it is unclear how the virus capsid and receptor interact at the molecular level. In this study, we determined the X-ray crystal structure of the soluble CD300lf (sCD300lf) and the murine norovirus capsid protruding domain complex at a 2.05-Å resolution. We found that the sCD300lf-binding site is located on the topside of the protruding domain and involves a network of hydrophilic and hydrophobic interactions. sCD300lf locked nicely into a complementary cavity on the protruding domain that is additionally coordinated with a positive surface charge on sCD300lf and a negative surface charge on the protruding domain. Five of six protruding domain residues interacting with sCD300lf were maintained between different murine norovirus strains, suggesting that sCD300lf was capable of binding to a highly conserved pocket. Moreover, a sequence alignment with other CD300 paralogs showed that the sCD300lf-interacting residues were partially conserved in CD300ld but variable in other CD300 family members, consistent with previously reported infection selectivity. Overall, these data provide insights into how a norovirus engages a protein receptor and will be important for a better understanding of selective recognition and norovirus attachment and entry mechanisms.IMPORTANCE Noroviruses exhibit exquisite host range specificity due to species-specific interactions between the norovirus capsid protein and host molecules. Given this strict host range restriction, it has been unclear how the viruses are maintained within a species between relatively sporadic epidemics. While much data demonstrate that noroviruses can interact with carbohydrates, recent work has shown that expression of the protein CD300lf is both necessary and sufficient for murine norovirus infection of mice and binding of the virus to permissive cells. Importantly, the expression of this murine protein by human cells renders them fully permissive for murine norovirus infection, indicating that at least in this case, host range restriction is determined by molecular events that control receptor binding and entry. Defining the atomic-resolution interactions between the norovirus capsid protein and its cognate receptor is essential for a molecular understanding of host-range restriction and norovirus tropism.


Assuntos
Proteínas do Capsídeo/metabolismo , Norovirus/metabolismo , Receptores Imunológicos/metabolismo , Receptores Virais/metabolismo , Ligação Viral , Sequência de Aminoácidos , Animais , Sítios de Ligação , Infecções por Caliciviridae/virologia , Linhagem Celular Transformada , Cristalografia por Raios X , Gastroenterite/virologia , Especificidade de Hospedeiro/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Domínios Proteicos , Células RAW 264.7 , Alinhamento de Sequência
7.
PLoS Pathog ; 13(11): e1006636, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29095961

RESUMO

Norovirus is the leading cause of gastroenteritis worldwide. Despite recent developments in norovirus propagation in cell culture, these viruses are still challenging to grow routinely. Moreover, little is known on how norovirus infects the host cells, except that histo-blood group antigens (HBGAs) are important binding factors for infection and cell entry. Antibodies that bind at the HBGA pocket and block attachment to HBGAs are believed to neutralize the virus. However, additional neutralization epitopes elsewhere on the capsid likely exist and impeding the intrinsic structural dynamics of the capsid could be equally important. In the current study, we investigated a panel of Nanobodies in order to probe functional epitopes that could trigger capsid rearrangement and/ or interfere with HBGA binding interactions. The precise binding sites of six Nanobodies (Nano-4, Nano-14, Nano-26, Nano-27, Nano-32, and Nano-42) were identified using X-ray crystallography. We showed that these Nanobodies bound on the top, side, and bottom of the norovirus protruding domain. The impact of Nanobody binding on norovirus capsid morphology was analyzed using electron microscopy and dynamic light scattering. We discovered that distinct Nanobody epitopes were associated with varied changes in particle structural integrity and assembly. Interestingly, certain Nanobody-induced capsid morphological changes lead to the capsid protein degradation and viral RNA exposure. Moreover, Nanobodies employed multiple inhibition mechanisms to prevent norovirus attachment to HBGAs, which included steric obstruction (Nano-14), allosteric interference (Nano-32), and violation of normal capsid morphology (Nano-26 and Nano-85). Finally, we showed that two Nanobodies (Nano-26 and Nano-85) not only compromised capsid integrity and inhibited VLPs attachment to HBGAs, but also recognized a broad panel of norovirus genotypes with high affinities. Consequently, Nano-26 and Nano-85 have a great potential to function as novel therapeutic agents against human noroviruses.


Assuntos
Anticorpos Neutralizantes/farmacologia , Antivirais/farmacologia , Proteínas do Capsídeo/antagonistas & inibidores , Capsídeo/efeitos dos fármacos , Modelos Moleculares , Norovirus/efeitos dos fármacos , Anticorpos de Domínio Único/farmacologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , Afinidade de Anticorpos , Antivirais/química , Antivirais/metabolismo , Sítios de Ligação de Anticorpos , Ligação Competitiva , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Reações Cruzadas , Cristalografia por Raios X , Difusão Dinâmica da Luz , Epitopos , Cinética , Microscopia Eletrônica de Transmissão , Norovirus/química , Norovirus/metabolismo , Norovirus/ultraestrutura , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo , Termodinâmica
8.
J Virol ; 90(9): 4843-4848, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26889023

RESUMO

Histo-blood group antigens (HBGAs) are important binding factors for norovirus infections. We show that two human milk oligosaccharides, 2'-fucosyllactose (2'FL) and 3-fucosyllactose (3FL), could block norovirus from binding to surrogate HBGA samples. We found that 2'FL and 3FL bound at the equivalent HBGA pockets on the norovirus capsid using X-ray crystallography. Our data revealed that 2'FL and 3FL structurally mimic HBGAs. These results suggest that 2'FL and 3FL might act as naturally occurring decoys in humans.


Assuntos
Antivirais/química , Leite Humano/química , Modelos Moleculares , Conformação Molecular , Norovirus/efeitos dos fármacos , Oligossacarídeos/química , Antivirais/farmacologia , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/metabolismo , Cristalografia por Raios X , Humanos , Oligossacarídeos/farmacologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Trissacarídeos/química , Trissacarídeos/farmacologia
9.
J Virol ; 89(5): 2718-30, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25520510

RESUMO

UNLABELLED: Human noroviruses are icosahedral single-stranded RNA viruses. The capsid protein is divided into shell (S) and protruding (P) domains, which are connected by a flexible hinge region. There are numerous genetically and antigenically distinct noroviruses, and the dominant strains evolve every other year. Vaccine and antiviral development is hampered by the difficulties in growing human norovirus in cell culture and the continually evolving strains. Here, we show the X-ray crystal structures of human norovirus P domains in complex with two different nanobodies. One nanobody, Nano-85, was broadly reactive, while the other, Nano-25, was strain specific. We showed that both nanobodies bound to the lower region on the P domain and had nanomolar affinities. The Nano-85 binding site mainly comprised highly conserved amino acids among the genetically distinct genogroup II noroviruses. Several of the conserved residues also were recognized by a broadly reactive monoclonal antibody, which suggested this region contained a dominant epitope. Superposition of the P domain nanobody complex structures into a cryoelectron microscopy particle structure revealed that both nanobodies bound at occluded sites on the particles. The flexible hinge region, which contained ~10 to 12 amino acids, likely permitted a certain degree of P domain movement on the particles in order to accommodate the nanobodies. Interestingly, the Nano-85 binding interaction with intact particles caused the particles to disassemble in vitro. Altogether, these results suggested that the highly conserved Nano-85 binding epitope contained a trigger mechanism for particle disassembly. Principally, this epitope represents a potential site of norovirus vulnerability. IMPORTANCE: We characterized two different nanobodies (Nano-85 and Nano-25) that bind to human noroviruses. Both nanobodies bound with high affinities to the lower region of the P domain, which was occluded on intact particles. Nano-25 was specific for GII.10, whereas Nano-85 bound several different GII genotypes, including GII.4, GII.10, and GII.12. We showed that Nano-85 was able to detect norovirus virions in clinical stool specimens using a sandwich enzyme-linked immunosorbent assay. Importantly, we found that Nano-85 binding to intact particles caused the particles to disassemble. We believe that with further testing, Nano-85 not only will work as a diagnostic reagent in norovirus detection systems but also could function as a broadly reactive GII norovirus antiviral.


Assuntos
Anticorpos Antivirais/metabolismo , Proteínas do Capsídeo/metabolismo , Epitopos/metabolismo , Norovirus/efeitos dos fármacos , Anticorpos de Domínio Único/metabolismo , Desenvelopamento do Vírus/efeitos dos fármacos , Anticorpos Antivirais/química , Proteínas do Capsídeo/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Norovirus/imunologia , Ligação Proteica , Conformação Proteica , Anticorpos de Domínio Único/química , Vírion/ultraestrutura
10.
J Virol ; 90(5): 2710-5, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26699640

RESUMO

Recent reports suggest that human genogroup II genotype 17 (GII.17) noroviruses are increasing in prevalence. We analyzed the evolutionary changes of three GII.17 capsid protruding (P) domains. We found that the GII.17 P domains had little cross-reactivity with antisera raised against the dominant GII.4 strains. X-ray structural analysis of GII.17 P domains from 2002 to 2014 and 2015 suggested that surface-exposed substitutions on the uppermost part of the P domain might have generated a novel 2014-2015 GII.17 variant.


Assuntos
Infecções por Caliciviridae/virologia , Capsídeo/química , Evolução Molecular , Variação Genética , Genótipo , Norovirus/classificação , Norovirus/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Anticorpos Antivirais/imunologia , Capsídeo/imunologia , Reações Cruzadas , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Norovirus/química , Norovirus/isolamento & purificação , Conformação Proteica
11.
J Biol Chem ; 288(26): 19014-27, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23637230

RESUMO

To gain success in the evolutionary "arms race," venomous animals such as scorpions produce diverse neurotoxins selected to hit targets in the nervous system of prey. Scorpion α-toxins affect insect and/or mammalian voltage-gated sodium channels (Na(v)s) and thereby modify the excitability of muscle and nerve cells. Although more than 100 α-toxins are known and a number of them have been studied into detail, the molecular mechanism of their interaction with Na(v)s is still poorly understood. Here, we employ extensive molecular dynamics simulations and spatial mapping of hydrophobic/hydrophilic properties distributed over the molecular surface of α-toxins. It is revealed that despite the small size and relatively rigid structure, these toxins possess modular organization from structural, functional, and evolutionary perspectives. The more conserved and rigid "core module" is supplemented with the "specificity module" (SM) that is comparatively flexible and variable and determines the taxon (mammal versus insect) specificity of α-toxin activity. We further show that SMs in mammal toxins are more flexible and hydrophilic than in insect toxins. Concomitant sequence-based analysis of the extracellular loops of Na(v)s suggests that α-toxins recognize the channels using both modules. We propose that the core module binds to the voltage-sensing domain IV, whereas the more versatile SM interacts with the pore domain in repeat I of Na(v)s. These findings corroborate and expand the hypothesis on different functional epitopes of toxins that has been reported previously. In effect, we propose that the modular structure in toxins evolved to match the domain architecture of Na(v)s.


Assuntos
Neurotoxinas/química , Venenos de Escorpião/química , Canais de Sódio/química , Sequência de Aminoácidos , Animais , Biologia Computacional , Simulação por Computador , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Propriedades de Superfície
12.
J Chem Inf Model ; 54(4): 1189-99, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24689707

RESUMO

Molecular surfaces are the key players in biomolecular recognition and interactions. Nowadays, it is trivial to visualize a molecular surface and surface-distributed properties in three-dimensional space. However, such a representation trends to be biased and ambiguous in case of thorough analysis. We present a new method to create 2D spherical projection maps of entire protein surfaces and manipulate with them--protein surface topography (PST). It permits visualization and thoughtful analysis of surface properties. PST helps to easily portray conformational transitions, analyze proteins' properties and their dynamic behavior, improve docking performance, and reveal common patterns and dissimilarities in molecular surfaces of related bioactive peptides. This paper describes basic usage of PST with an example of small G-proteins conformational transitions, mapping of caspase-1 intersubunit interface, and intrinsic "complementarity" in the conotoxin-acetylcholine binding protein complex. We suggest that PST is a beneficial approach for structure-function studies of bioactive peptides and small proteins.


Assuntos
Conformação Proteica , Interações Hidrofóbicas e Hidrofílicas , Proteínas/química , Proteínas/fisiologia , Eletricidade Estática , Relação Estrutura-Atividade
13.
Acta Crystallogr D Struct Biol ; 75(Pt 5): 498-504, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31063152

RESUMO

Bovine meat and milk factors (BMMFs) are circular, single-stranded episomal DNAs that have been detected in bovine meat and milk products. BMMFs are thought to have roles in human malignant and degenerative diseases. BMMFs encode a replication initiator protein (Rep) that is actively transcribed and translated in human cells. In this study, a Rep WH1 domain encoded on a BMMF (MSBI1.176) isolated from a multiple sclerosis human brain sample was determined to 1.53 Šresolution using X-ray crystallography. The overall structure of the MSBI1.176 WH1 domain was remarkably similar to other Rep structures, despite having a low (28%) amino-acid sequence identity. The MSBI1.176 WH1 domain contained elements common to other Reps, including five α-helices, five ß-strands and a hydrophobic pocket. These new findings suggest that the MSBI1.176 Rep might have comparable roles and functions to other known Reps of different origins.


Assuntos
Encéfalo/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Esclerose Múltipla/metabolismo , Plasmídeos/isolamento & purificação , Plasmídeos/metabolismo , Transativadores/química , Transativadores/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Homologia de Sequência
14.
Virology ; 508: 81-89, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28505592

RESUMO

Human noroviruses are the leading cause of outbreaks of acute gastroenteritis. Norovirus interactions with histo-blood group antigens (HBGAs) are known to be important for an infection. In this study, we identified the HBGA binding pocket for an emerging GII genotype 17 (GII.17) variant using X-ray crystallography. The GII.17 variant bound the HBGA with an equivalent set of residues as the leading pandemic GII.4 variants. These structural data highlights the conserved nature of HBGA binding site between prevalent GII noroviruses. Noroviruses also interact with human milk oligosaccharides (HMOs), which mimic HBGAs and may function as receptor decoys. We previously showed that HMOs inhibited the binding of rarely detected GII.10 norovirus to HBGAs. We now found that an HMO, 2'-fucosyllactose (2'FL), additionally blocked both the GI.1 and GII.17 noroviruses from binding to HBGAs. Together, these findings provide evidence that 2'FL might function as a broadly reactive antiviral against multiple norovirus genogroups.


Assuntos
Infecções por Caliciviridae/virologia , Gastroenterite/virologia , Leite Humano/química , Norovirus/efeitos dos fármacos , Oligossacarídeos/farmacologia , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/metabolismo , Infecções por Caliciviridae/tratamento farmacológico , Infecções por Caliciviridae/metabolismo , Gastroenterite/tratamento farmacológico , Gastroenterite/metabolismo , Humanos , Norovirus/fisiologia , Oligossacarídeos/química , Ligação Proteica
15.
mSphere ; 2(2)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28405629

RESUMO

Typically, human noroviruses cause symptoms of acute gastroenteritis for 2 to 4 days. Often, the virions are shed in stool for several days after the symptoms recede, which in turn can lead to further contamination and transmission. Moreover, a number of reports have considered that chronic norovirus infections, i.e., lasting months and years, might even function as reservoirs for the generation of novel strains that can escape the herd immunity or have modified binding interactions with histo-blood group antigens (HBGAs). In this study, we analyzed noroviruses isolated from a patient who has presented a chronic infection for more than 6 years. We found that the isolated capsid sequences clustered into two main genetic types (termed A and B), despite a plethora of capsid quasi-sequences. Furthermore, the two genetic types corresponded well with distinct antigenicities. On the other hand, we showed that numerous amino acid substitutions on the capsid surface of genetic types A and B did not alter the HBGA binding profiles. However, divergent binding profiles for types A and B were observed with human milk oligosaccharides (HMOs), which structurally mimic HBGAs and may act as natural antivirals. Importantly, the isolated capsid sequences only had approximately 90% amino acid identity with other known sequences, which suggested that transmission of these chronic noroviruses could be limited. IMPORTANCE The norovirus genogroup II genotype 4 (GII.4) variants have approximately 5% divergence in capsid amino acid identity and have dominated over the past decade. The precise reason(s) for the GII.4 emergence and persistence in the human population is still unknown, but some studies have suggested that chronically infected patients might generate novel variants that can cause new epidemics. We examined GII.4 noroviruses isolated from an immunocompromised patient with a long-term infection. Numerous norovirus capsid quasi-species were isolated during the 13-month study. The capsid quasi-species clustered into two genetic and antigenic types. However, the HBGA binding profiles were similar between the two antigenic clusters, indicating that the amino acid substitutions did not alter the HBGA binding interactions. The isolated sequences represented two new GII.4 variants, but similar sequences were not found in the database. These results indicated that chronically infected patients might not generate novel noroviruses that cause outbreaks.

16.
Virology ; 487: 296-301, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26599362

RESUMO

We determined a structure of a bovine (genogroup III, GIII) norovirus capsid protruding (P) domain using X-ray crystallography. The bovine P domain was reminiscent of other norovirus genogroups (GI, GII, GIV, and GV), but closely matched the human GI P domain. We also identified a monoclonal antibody that was capable of binding the five different (GI-GV) P domains. Our data suggests that genetically diverse noroviruses still contain common epitopes.


Assuntos
Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/ultraestrutura , Capsídeo/imunologia , Capsídeo/ultraestrutura , Norovirus/ultraestrutura , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/genética , Bovinos , Doenças dos Bovinos/virologia , Reações Cruzadas/imunologia , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Norovirus/classificação , Estrutura Terciária de Proteína , Alinhamento de Sequência
17.
World J Exp Med ; 6(4): 63-71, 2016 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-27909686

RESUMO

AIM: To investigate the effect of two ways of lipofuscin production (lipid peroxidation and glycation) on lipofuscin fluorescence characteristics and phototoxicity and to compare them with the properties of natural lipofuscin. METHODS: Model lipofuscins were prepared on the basis of bovine photoreceptor outer segments (POS) with bisretinoid A2E addition. One set of samples was prepared from POS modified by lipid peroxidation, while another set from POS modified by glycation with fructose. Fluorescent properties and kinetics of photoinduced superoxide generation of model lipofuscins and human retinal pigment epithelium (RPE) lipofuscin were compared. The fluorescence spectra of samples were measured at 365 nm excitation wavelength and 380-650 emission wavelength. RESULTS: The fluorescence spectra of model lipofuscins are almost the same as the spectrum of natural lipofuscin. Visible light irradiation of both model lipofuscins and natural lipofuscin isolated from RPE cells leads to decrease of a fluorescence maximum at 550 nm and to appearance of a distinct, new maximum at 445-460 nm. The rate of photogeneration of reactive oxygen forms by both model lipofuscins was almost the same and approximately two times less than that of RPE lipofuscin granules. CONCLUSION: These data suggest that fluorescent characteristics and phototoxicity of lipofuscin granules depend only to an insignificant degree on the oxidative modification of POS proteins and lipids, and generally are defined by the bisretinoid fluorophores contained in them.

18.
J Vis Exp ; (110)2016 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-27167457

RESUMO

The norovirus capsid is composed of a single major structural protein, termed VP1. VP1 is subdivided into a shell (S) domain and a protruding (P) domain. The S domain forms a contiguous scaffold around the viral RNA, whereas the P domain forms viral spikes on the S domain and contains determinants for antigenicity and host-cell interactions. The P domain binds carbohydrate structures, i.e., histo-blood group antigens, which are thought to be important for norovirus infections. In this protocol, we describe a method for producing high quality norovirus P domains in high yields. These proteins can then be used for X-ray crystallography and ELISA in order to study antigenicity and host-cell interactions. The P domain is firstly cloned into an expression vector and then expressed in bacteria. The protein is purified using three steps that involve immobilized metal-ion affinity chromatography and size exclusion chromatography. In principle, it is possible to clone, express, purify, and crystallize proteins in less than four weeks, which makes this protocol a rapid system for analyzing newly emerging norovirus strains.


Assuntos
Proteínas do Capsídeo/química , Cristalografia por Raios X/métodos , Norovirus/química , Escherichia coli , Humanos , Domínios e Motivos de Interação entre Proteínas
19.
mSphere ; 1(5)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27747297

RESUMO

Human noroviruses are the dominant cause of outbreaks of acute gastroenteritis. These viruses are usually detected by molecular methods, including reverse transcriptase PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Human noroviruses are genetically and antigenically diverse, with two main genogroups that are further subdivided into over 40 different genotypes. During the past decade, genogroup 2 genotype 4 (GII.4) has dominated in most countries, but recently, viruses belonging to GII.17 have increased in prevalence in a number of countries. A number of commercially available ELISAs and lateral flow immunoassays were found to have lower sensitivities to the GII.17 viruses, indicating that the antibodies used in these methods may not have a high level of cross-reactivity. In this study, we developed a rapid Nanobody-based lateral flow immunoassay (Nano-immunochromatography [Nano-IC]) for the detection of human norovirus in clinical specimens. The Nano-IC assay detected virions from two GII.4 norovirus clusters, which included the current dominant strain and a novel variant strain. The Nano-IC method had a sensitivity of 80% and specificity of 86% for outbreak specimens. Norovirus virus-like particles (VLPs) representing four genotypes (GII.4, GII.10, GII.12, and GII.17) could be detected by this method, demonstrating the potential in clinical screening. However, further modifications to the Nano-IC method are needed in order to improve this sensitivity, which may be achieved by the addition of other broadly reactive Nanobodies to the system. IMPORTANCE We previously identified a Nanobody (termed Nano-85) that bound to a highly conserved region on the norovirus capsid. In this study, the Nanobody was biotinylated and gold conjugated for a lateral flow immunoassay (termed Nano-IC). We showed that the Nano-IC assay was capable of detecting at least four antigenically distinct GII genotypes, including the newly emerging GII.17. In the clinical setting, the Nano-IC assay had sensitivities equivalent to other commercially available lateral flow systems. The Nano-IC method was capable of producing results in ~5 min, which makes this method useful in settings that require rapid diagnosis, such as cruise ship outbreaks and elder care facilities. The Nano-IC assay has several advantages over antibody-based IC methods: for example, Nanobodies can be readily produced in large quantities, they are generally more stable than conventional antibodies, and the Nanobody binding sites can be easily obtained by X-ray crystallography.

20.
Virology ; 485: 199-204, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26295280

RESUMO

Human norovirus is a dominant cause of acute gastroenteritis around the world. Several norovirus disinfectants label citric acid as an active ingredient. In this study, we showed that norovirus virus-like particles (VLPs) treated with citrate buffer caused the particles to alter their morphology, including increased diameters associated with a new ring-like structure. We also found that epitopes on the protruding (P) domain on these particles were more readily accessible to antibodies after the citrate treatment. These results suggested that citrate had a direct effect on the norovirus particles. Using X-ray crystallography, we showed that the P domain bound citrate from lemon juice and a disinfectant containing citric acid. Importantly, citrate binds at the histo-blood group antigen binding pocket, which are attachment factors for norovirus infections. Taken together, these new findings suggested that it might be possible to treat/reduce norovirus infections with citrate, although further studies are needed.


Assuntos
Anticorpos Antivirais/química , Proteínas do Capsídeo/química , Ácido Cítrico/química , Epitopos/química , Norovirus/química , Vírion/química , Baculoviridae/genética , Antígenos de Grupos Sanguíneos/química , Proteínas do Capsídeo/ultraestrutura , Cristalografia por Raios X , Desinfetantes/química , Epitopos/ultraestrutura , Expressão Gênica , Microscopia Eletrônica , Modelos Moleculares , Norovirus/ultraestrutura , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/ultraestrutura , Anticorpos de Domínio Único/química , Vírion/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA