Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Ther ; 30(8): 2680-2692, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35490295

RESUMO

Junctional epidermolysis bullosa (JEB) is a debilitating hereditary skin disorder caused by mutations in genes encoding laminin-332, type XVII collagen (C17), and integrin-α6ß4, which maintain stability between the dermis and epidermis. We designed patient-specific Cas9-nuclease- and -nickase-based targeting strategies for reframing a common homozygous deletion in exon 52 of COL17A1 associated with a lack of full-length C17 expression. Subsequent characterization of protein restoration, indel composition, and divergence of DNA and mRNA outcomes after treatment revealed auspicious efficiency, safety, and precision profiles for paired nicking-based COL17A1 editing. Almost 46% of treated primary JEB keratinocytes expressed reframed C17. Reframed COL17A1 transcripts predominantly featured 25- and 37-nt deletions, accounting for >42% of all edits and encoding C17 protein variants that localized accurately to the cell membrane. Furthermore, corrected cells showed accurate shedding of the extracellular 120-kDa C17 domain and improved adhesion capabilities to laminin-332 compared with untreated JEB cells. Three-dimensional (3D) skin equivalents demonstrated accurate and continuous deposition of C17 within the basal membrane zone between epidermis and dermis. Our findings constitute, for the first time, gene-editing-based correction of a COL17A1 mutation and demonstrate the superiority of proximal paired nicking strategies based on Cas9 D10A nickase over wild-type Cas9-based strategies for gene reframing in a clinical context.


Assuntos
Autoantígenos , Epidermólise Bolhosa Juncional , Epidermólise Bolhosa , Colágenos não Fibrilares , Autoantígenos/genética , Desoxirribonuclease I/genética , Epidermólise Bolhosa/metabolismo , Epidermólise Bolhosa Juncional/genética , Epidermólise Bolhosa Juncional/terapia , Homozigoto , Humanos , Laminina/genética , Mutação , Colágenos não Fibrilares/genética , Deleção de Sequência , Colágeno Tipo XVII
2.
Eur J Immunol ; 51(1): 191-196, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32648940

RESUMO

Interleukin-31 (IL-31) is a Th2 cell-derived cytokine that has been closely linked to pruritic skin inflammation. More recently, enhanced IL-31 serum levels have also been observed in patients with allergic rhinitis and allergic asthma. Therefore, the main aim of this study was to unravel the contribution of IL-31 to allergen-induced lung inflammation. We analyzed lung inflammation in response to the timothy grass (Phleum pratense) pollen allergen Phl p 5 in C57BL/6 wild-type (wt) mice, IL-31 transgenic (IL-31tg) mice, and IL-31 receptor alpha-deficient animals (IL-31RA-/- ). IL-31 and IL-31RA levels were monitored by qRT-PCR. Cellular infiltrate in bronchoalveolar lavage fluid (BALF) and lung tissue inflammation, mucus production as well as epithelial thickness were measured by flow cytometry and histomorphology. While allergen challenge induced IL-31RA expression in lung tissue of wt and IL-31tg mice, high IL-31 expression was exclusively observed in lung tissue of IL-31tg mice. Upon Phl p 5 challenge, IL-31tg mice showed reduced numbers of leukocytes and eosinophils in BALF and lung tissue as well as diminished mucin expression and less pronounced epithelial thickening compared to IL-31RA-/- or wt animals. These findings suggest that the IL-31/IL-31RA axis may regulate local, allergen-induced inflammation in the lungs.


Assuntos
Alérgenos/efeitos adversos , Alérgenos/imunologia , Interleucinas/imunologia , Proteínas de Plantas/efeitos adversos , Proteínas de Plantas/imunologia , Pneumonia/imunologia , Animais , Asma/etiologia , Asma/imunologia , Asma/prevenção & controle , Líquido da Lavagem Broncoalveolar/imunologia , Modelos Animais de Doenças , Eosinófilos/imunologia , Feminino , Interleucinas/genética , Leucócitos/imunologia , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Phleum/efeitos adversos , Phleum/imunologia , Pneumonia/etiologia , Pneumonia/prevenção & controle , Pólen/efeitos adversos , Pólen/imunologia , Receptores de Interleucina/deficiência , Receptores de Interleucina/genética , Receptores de Interleucina/imunologia
3.
Allergy ; 76(1): 210-222, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32621318

RESUMO

BACKGROUND: Allergen-specific immunotherapy via the skin targets a tissue rich in antigen-presenting cells, but can be associated with local and systemic side effects. Allergen-polysaccharide neoglycogonjugates increase immunization efficacy by targeting and activating dendritic cells via C-type lectin receptors and reduce side effects. OBJECTIVE: We investigated the immunogenicity, allergenicity, and therapeutic efficacy of laminarin-ovalbumin neoglycoconjugates (LamOVA). METHODS: The biological activity of LamOVA was characterized in vitro using bone marrow-derived dendritic cells. Immunogenicity and therapeutic efficacy were analyzed in BALB/c mice. Epicutaneous immunotherapy (EPIT) was performed using fractional infrared laser ablation to generate micropores in the skin, and the effects of LamOVA on blocking IgG, IgE, cellular composition of BAL, lung, and spleen, lung function, and T-cell polarization were assessed. RESULTS: Conjugation of laminarin to ovalbumin reduced its IgE binding capacity fivefold and increased its immunogenicity threefold in terms of IgG generation. EPIT with LamOVA induced significantly higher IgG levels than OVA, matching the levels induced by s.c. injection of OVA/alum (SCIT). EPIT was equally effective as SCIT in terms of blocking IgG induction and suppression of lung inflammation and airway hyperresponsiveness, but SCIT was associated with higher levels of therapy-induced IgE and TH2 cytokines. EPIT with LamOVA induced significantly lower local skin reactions during therapy compared to unconjugated OVA. CONCLUSION: Conjugation of ovalbumin to laminarin increased its immunogenicity while at the same time reducing local side effects. LamOVA EPIT via laser-generated micropores is safe and equally effective compared to SCIT with alum, without the need for adjuvant.


Assuntos
Asma , Pneumonia , beta-Glucanas , Alérgenos , Animais , Asma/terapia , Lasers , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina
4.
Allergy ; 75(5): 1217-1228, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31880319

RESUMO

BACKGROUND: Skin-based immunotherapy of type 1 allergies has recently been re-investigated as an alternative for subcutaneous injections. In the current study, we employed a mouse model of house dust mite (HDM)-induced lung inflammation to explore the potential of laser-facilitated epicutaneous allergen-specific treatment. METHODS: Mice were sensitized against native Dermatophagoides pteronyssinus extract and repeatedly treated by application of depigmented D pteronyssinus extract via laser-generated skin micropores or by subcutaneous injection with or without alum. Following aerosol challenges, lung function was determined by whole-body plethysmography and bronchoalveolar lavage fluid was analyzed for cellular composition and cytokine levels. HDM-specific IgG subclass antibodies were determined by ELISA. Serum as well as cell-bound IgE was measured by ELISA, rat basophil leukemia cell assay, and ex vivo using a basophil activation test, respectively. Cultured lymphocytes were analyzed for cytokine secretion profiles and cellular polarization by flow cytometry. RESULTS: Immunization of mice by subcutaneous injection or epicutaneous laser microporation induced comparable IgG antibody levels, but the latter preferentially induced regulatory T cells and in general downregulated T cell cytokine production. This effect was found to be a result of the laser treatment itself, independent from extract application. Epicutaneous treatment of sensitized animals led to induction of blocking IgG, and improvement of lung function, superior compared to the effects of subcutaneous therapy. During the whole therapy schedule, no local or systemic side effects occurred. CONCLUSION: Allergen-specific immunotherapy with depigmented HDM extract via laser-generated skin micropores offers a safe and effective treatment option for HDM-induced allergy and lung inflammation.


Assuntos
Alérgenos , Hipersensibilidade , Animais , Antígenos de Dermatophagoides , Dessensibilização Imunológica , Hipersensibilidade/terapia , Lasers , Camundongos , Pyroglyphidae
5.
Int J Pharm ; 593: 120123, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33278496

RESUMO

Multifunctional gelatin nanoparticles modified by NIR-emitting gold/silver alloy nanoclusters and loaded with ovalbumin (OVA) as a model antigen were developed. Two different designs of nanoparticles were introduced; positively charged NPs with OVA displayed over the surface (S-NPs) versus OVA encapsulated in the NPs' matrix and the surface is functionalized by dextran (Dex-NPs) for dendritic cell targeting. The nanoparticles showed average particle sizes of 210 and 305 nm and zeta potentials of +25.6 and -23.9 mV, for S-NPs and Dex-NPs, respectively. Both types of NPs succeeded to induce maturation of murine bone marrow-derived dendritic cells (BMDCs) as indicated by the upregulated surface expression of MHC-II and co-stimulatory molecules CD86, CD80 and CD40. Dex-NPs induced no cytotoxicity in BMDCs, in contrast to S-NPs. Functionalization of NPs with dextran increased their uptake by BMDCs, enhanced secretion of immune stimulatory chemokines, and boosted their T cell stimulation capacity. Co-culture of NP loaded BMDCs with OVA-specific CD4 or CD8 T cells, induced enhanced T cell proliferation and release of IL-2 from both CD8 and CD4 cells and IFN-γ from CD8 T cells. This highlights the potential of the developed NPs as vaccines for inducing T helper 1 type CD4 as well as CD8 responses, such as vaccines for cancer or viral infections.


Assuntos
Células Dendríticas , Nanopartículas , Animais , Antígenos , Imunidade , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina
6.
Vaccine ; 38(5): 1015-1024, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31812465

RESUMO

BACKGROUND: The skin resembles an attractive target for vaccination due to its accessibility and abundance of resident immune cells. Cells like γδ T cells and mast cells (MCs) are part of the first line of defence against exogenous threats. Despite being important mediators for eliciting TH2 immune responses after epithelial stress, γδ T cell and MC functions still remain to be completely understood. Here, we aimed to characterize their roles in shaping adaptive immune responses after laser-mediated epicutaneous immunization (EPI). METHODS: γδ T cell knock out, MC-depleted, and wildtype control mice were immunized with mannan-conjugated grass pollen allergen Phl p 5 (P5-MN) by laser-mediated EPI. After 2-3 immunizations, cytokine expression, T helper polarization, and antigen-specific IgG1/IgE levels were analysed. Furthermore, the local cytokine/chemokine milieu after laser microporation was determined. RESULTS: The majority of inflammatory chemokines and cytokines induced by laser treatment were not affected by the presence of γδ T cells or MCs. However, RANTES was elevated in γδ T cell knock out mice and GROα, TSLP, and IL-33 were significantly decreased after MC depletion. The absence of γδ T cells or depletion of MCs had no substantial effect on adaptive immune responses after laser-mediated EPI, except for slightly reduced IgG1 and effector T cell levels in MC-depleted mice. CONCLUSIONS: γδ T cells did not play a pivotal role in shaping the humoral and cellular adaptive immune response after laser-mediated EPI. MC depletion decreased the numbers of effector T cells, indicating a potential role of MCs in the activation and maturation of T cells after EPI.


Assuntos
Imunidade Adaptativa , Imunização/métodos , Mastócitos/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Quimiocinas/imunologia , Citocinas/imunologia , Injeções Intradérmicas , Lasers , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptores de Antígenos de Linfócitos T gama-delta
7.
Front Immunol ; 11: 1334, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714326

RESUMO

Humans have always been in contact with natural airborne particles from many sources including biologic particulate matter (PM) which can exhibit allergenic properties. With industrialization, anthropogenic and combustion-derived particles have become a major fraction. Currently, an ever-growing number of diverse and innovative materials containing engineered nanoparticles (NPs) are being developed with great expectations in technology and medicine. Nanomaterials have entered everyday products including cosmetics, textiles, electronics, sports equipment, as well as food, and food packaging. As part of natural evolution humans have adapted to the exposure to particulate matter, aiming to protect the individual's integrity and health. At the respiratory barrier, complications can arise, when allergic sensitization and pulmonary diseases occur in response to particle exposure. Particulate matter in the form of plant pollen, dust mites feces, animal dander, but also aerosols arising from industrial processes in occupational settings including diverse mixtures thereof can exert such effects. This review article gives an overview of the allergic immune response and addresses specifically the mechanisms of particulates in the context of allergic sensitization, effector function and therapy. In regard of the first theme (i), an overview on exposure to particulates and the functionalities of the relevant immune cells involved in allergic sensitization as well as their interactions in innate and adaptive responses are described. As relevant for human disease, we aim to outline (ii) the potential effector mechanisms that lead to the aggravation of an ongoing immune deviation (such as asthma, chronic obstructive pulmonary disease, etc.) by inhaled particulates, including NPs. Even though adverse effects can be exerted by (nano)particles, leading to allergic sensitization, and the exacerbation of allergic symptoms, promising potential has been shown for their use in (iii) therapeutic approaches of allergic disease, for example as adjuvants. Hence, allergen-specific immunotherapy (AIT) is introduced and the role of adjuvants such as alum as well as the current understanding of their mechanisms of action is reviewed. Finally, future prospects of nanomedicines in allergy treatment are described, which involve modern platform technologies combining immunomodulatory effects at several (immuno-)functional levels.


Assuntos
Alérgenos/imunologia , Hipersensibilidade/etiologia , Hipersensibilidade/imunologia , Material Particulado/efeitos adversos , Material Particulado/imunologia , Humanos
8.
J Control Release ; 266: 87-99, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-28919557

RESUMO

Due to its unique immunological properties, the skin is an attractive target tissue for allergen-specific immunotherapy. In our current work, we combined a dendritic cell targeting approach with epicutaneous immunization using an ablative fractional laser to generate defined micropores in the upper layers of the skin. By coupling the major birch pollen allergen Bet v 1 to mannan from S. cerevisiae via mild periodate oxidation we generated hypoallergenic Bet-mannan neoglycoconjugates, which efficiently targeted CD14+ dendritic cells and Langerhans cells in human skin explants. Mannan conjugation resulted in sustained release from the skin and retention in secondary lymphoid organs, whereas unconjugated antigen showed fast renal clearance. In a mouse model, Bet-mannan neoglycoconjugates applied via laser-microporated skin synergistically elicited potent humoral and cellular immune responses, superior to intradermal injection. The induced antibody responses displayed IgE-blocking capacity, highlighting the therapeutic potential of the approach. Moreover, application via micropores, but not by intradermal injection, resulted in a mixed TH1/TH17-biased immune response. Our data clearly show that applying mannan-neoglycoconjugates to an organ rich in dendritic cells using laser-microporation is superior to intradermal injection. Due to their low IgE binding capacity and biodegradability, mannan neoglycoconjugates therefore represent an attractive formulation for allergen-specific epicutaneous immunotherapy.


Assuntos
Alérgenos/administração & dosagem , Antígenos de Plantas/administração & dosagem , Células Dendríticas/imunologia , Lasers , Mananas/administração & dosagem , Pele/imunologia , Vacinação/métodos , Administração Cutânea , Animais , Ativação do Complemento , Feminino , Humanos , Imunoglobulina E/imunologia , Camundongos Endogâmicos BALB C , Porosidade , Células Th1/imunologia , Células Th17/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA