Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Phys Rev Lett ; 125(3): 031101, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32745435

RESUMO

For the time period from 1.5 to 4 Myr before the present we found in deep ocean ferromanganese crusts a ^{53}Mn excess concentration in terms of ^{53}Mn/Mn of about 4×10^{-14} over that expected for cosmogenic production. We conclude that this ^{53}Mn is of supernova origin because it is detected in the same time window, about 2.5 Myr ago, where ^{60}Fe has been found earlier. This overabundance confirms the supernova origin of that ^{60}Fe. For the first time, supernova-formed ^{53}Mn has been detected and it is the second positively identified radioisotope from the same supernova. The ratio ^{53}Mn/^{60}Fe of about 14 is consistent with that expected for a SN with a 11-25 M_{⊙} progenitor mass and solar metallicity.

2.
Phys Rev Lett ; 125(10): 102502, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32955302

RESUMO

The low-spin structure of the semimagic ^{64}Ni nucleus has been considerably expanded: combining four experiments, several 0^{+} and 2^{+} excited states were identified below 4.5 MeV, and their properties established. The Monte Carlo shell model accounts for the results and unveils an unexpectedly complex landscape of coexisting shapes: a prolate 0^{+} excitation is located at a surprisingly high energy (3463 keV), with a collective 2^{+} state 286 keV above it, the first such observation in Ni isotopes. The evolution in excitation energy of the prolate minimum across the neutron N=40 subshell gap highlights the impact of the monopole interaction and its variation in strength with N.

3.
Phys Rev Lett ; 116(15): 151104, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27127953

RESUMO

A dying massive star ends in a supernova explosion ejecting a large fraction of its mass into the interstellar medium. If this happens nearby, part of the ejecta might end on Solar System bodies and, in fact, radioactive ^{60}Fe has been detected on the Pacific ocean floor in about 2 Ma old layers. Here, we report on the detection of this isotope also in lunar samples, originating presumably from the same event. The concentration of the cosmic ray produced isotope ^{53}Mn, measured in the same samples, proves the supernova origin of the ^{60}Fe. From the ^{60}Fe concentrations found we deduce a reliable value for the local interstellar fluence in the range of 1×10^{8} at/cm^{2}. Thus, we obtain constraints on the recent and nearby supernova(e).

4.
Nature ; 424(6948): 539-42, 2003 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-12891354

RESUMO

Data from the survivors of the atomic bombs serve as the major basis for risk calculations of radiation-induced cancer in humans. A controversy has existed for almost two decades, however, concerning the possibility that neutron doses in Hiroshima may have been much larger than estimated. This controversy was based on measurements of radioisotopes activated by thermal neutrons that suggested much higher fluences at larger distances than expected. For fast neutrons, which contributed almost all the neutron dose, clear measurement validation has so far proved impossible at the large distances (900 to 1,500 m) most relevant to survivor locations. Here, the first results are reported for the detection of 63Ni produced predominantly by fast neutrons (above about 1 MeV) in copper samples from Hiroshima. This breakthrough was made possible by the development of chemical extraction methods and major improvements in the sensitivity of accelerator mass spectrometry for detection of 63Ni atoms (refs 8-11). When results are compared with 63Ni activation predicted by neutron doses for Hiroshima survivors, good agreement is observed at the distances most relevant to survivor data. These findings provide, for the first time, clear measurement validation of the neutron doses to survivors in Hiroshima.


Assuntos
Relação Dose-Resposta à Radiação , Nêutrons Rápidos , Guerra Nuclear , Cobre/análise , Cobre/química , Nêutrons Rápidos/efeitos adversos , Humanos , Isótopos , Japão , Níquel/análise , Radioisótopos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Sobrevida
5.
Radiat Res ; 171(1): 118-22, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19138052

RESUMO

The first measurements of (63)Ni produced by A-bomb fast neutrons (above approximately 1 MeV) in copper samples from Hiroshima encompassed distances from approximately 380 to 5062 m from the hypocenter (the point on the ground directly under the bomb). They included the region of interest to survivor studies (approximately 900 to 1500 m) and provided the first direct validation of fast neutrons in that range. However, a significant measurement gap remained between the hypocenter and 380 m. Measurements close to the hypocenter are important as a high-value anchor for the slope of the curve for neutron activation as a function of distance. Here we report measurements of (63)Ni in copper samples from the historic Hiroshima Atomic Bomb Dome, which is located approximately 150 m from the hypocenter. These measurements extend the range of our previously published data for (63)Ni providing a more comprehensive and consistent A-bomb activation curve. The results are also in good agreement with calculations based on the current dosimetry system (DS02) and give further experimental support to the accuracy of this system that forms the basis for radiation risk estimates worldwide.


Assuntos
Cobre/química , Nêutrons Rápidos , Armas Nucleares , Japão , Espectrometria de Massas , Níquel/análise , Radioisótopos/análise
6.
Nat Commun ; 6: 5956, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25601158

RESUMO

Half of the heavy elements including all actinides are produced in r-process nucleosynthesis, whose sites and history remain a mystery. If continuously produced, the Interstellar Medium is expected to build-up a quasi-steady state of abundances of short-lived nuclides (with half-lives ≤100 My), including actinides produced in r-process nucleosynthesis. Their existence in today's interstellar medium would serve as a radioactive clock and would establish that their production was recent. In particular (244)Pu, a radioactive actinide nuclide (half-life=81 My), can place strong constraints on recent r-process frequency and production yield. Here we report the detection of live interstellar (244)Pu, archived in Earth's deep-sea floor during the last 25 My, at abundances lower than expected from continuous production in the Galaxy by about 2 orders of magnitude. This large discrepancy may signal a rarity of actinide r-process nucleosynthesis sites, compatible with neutron-star mergers or with a small subset of actinide-producing supernovae.

7.
Int J Radiat Biol ; 68(1): 97-103, 1995 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-7629443

RESUMO

In this paper measurements of the radionuclides of 36Cl, 41Ca, 60Co, 152Eu and 154Eu in samples from Hiroshima, which were exposed to neutrons of the A-bomb explosion, are interpreted. In order to calculate the neutron spectrum at the sample site, neutron transport calculations using Monte Carlo techniques were carried out. Activation profiles in a granite mock-up irradiated with reactor neutrons could be reproduced by this method using DS86 input parameters. The calculated neutron spectrum at the sample site for non-thermal neutrons is identical to that obtained in DS86, but contains some 50% more thermal neutrons. The influence of parameters like soil composition, source terms and air humidity on the activation of these radioisotopes is discussed. The granite-covered earth at the sample site, for example, hardens the spectrum in comparison with DS86 values. Even when using a fission spectrum pointing downward and neglecting air humidity one cannot explain our 36Cl measurements. If the effective thermal neutron fluences, that have a similar ratio of resonance integral to thermal neutron capture cross sections obtained from 36Cl, 41Ca and 152Eu, are averaged, a bomb yield of about 16 kt is deduced in agreement with a bomb yield of (15 +/- 3) kt estimated in DS86.


Assuntos
Nêutrons , Guerra Nuclear , Radioisótopos/análise , Radioisótopos de Cálcio/análise , Cloro/análise , Radioisótopos de Cobalto/análise , Európio/análise , Japão
8.
Int J Radiat Biol ; 58(4): 661-72, 1990 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-1976726

RESUMO

Accelerator mass spectrometry was performed at the Munich tandem laboratory to determine 36Cl/Cl ratios of samples from a tombstone exposed to neutrons from the Hiroshima bomb. The ratios were determined from the surface to deeper positions. The depth profile of 36Cl/Cl can be used for estimating the neutron energy distribution and intensity near the hypocentre in Hiroshima.


Assuntos
Cloro/análise , Nêutrons , Guerra Nuclear , Radioisótopos/análise , Fenômenos Geológicos , Geologia , Japão , Espectrometria de Massas/métodos , Doses de Radiação
9.
Health Phys ; 79(4): 358-64, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11007457

RESUMO

After the release of the present dosimetry system DS86 in 1987, measurements have shown that DS86 may substantially underestimate thermal neutron fluences at large distances (>1,000 m) from the hypocenter in Hiroshima. This discrepancy casts doubts on the DS86 neutron source term and, consequently, the survivors' estimated neutron doses. However, the doses were caused mainly by fast neutrons. To determine retrospectively fast neutron fluences in Hiroshima, the reaction 63Cu(n, p)63Ni can be used, if adequate copper samples can be found. Measuring 63Ni (half life 100 y) in Hiroshima samples requires a very sensitive technique, such as accelerator mass spectrometry (AMS), because of the relatively small amounts of 63Ni expected (approximately 10(5)-10(6) atoms per gram of copper). Experiments performed at Lawrence Livermore National Laboratory have demonstrated in 1996 that AMS can be used to measure 63Ni in Hiroshima copper samples. Subsequently, a collaboration was established with the Technical University of Munich in view of its potential to perform more sensitive measurements of 63Ni than the Livermore facility and in the interest of interlaboratory validation. This paper presents the progress made at the Munich facility in the measurement of 63Ni by AMS. The Munich accelerator mass spectrometry facility is a combination of a high energy tandem accelerator and a detection system featuring a gas-filled magnet. It is designed for high sensitivity measurements of long-lived radioisotopes. Optimization of the ion source setup has further improved the sensitivity for 63Ni by reducing the background level of the 63Cu isobar interference by about two orders of magnitude. Current background levels correspond to a ratio of 63Ni/Ni<2x10(-14) and suggest that, with adequate copper samples, the assessment of fast neutron fluences in Hiroshima and Nagasaki is possible for ground distances of up to 1500 m, and--under favorable conditions--even beyond. To demonstrate this capability, we have measured successfully 6Ni/Ni ratios as low as (3.5 +/- 0.6) x 10(-13). The latter are, based on DS86, representative of a ratio expected from a typical Hiroshima copper sample at about 1,300-m ground range.


Assuntos
Nêutrons Rápidos , Níquel/análise , Guerra Nuclear , Radioisótopos/análise , Sobreviventes , Carga Corporal (Radioterapia) , Calibragem , Cobre/análise , Humanos , Japão , Espectrometria de Massas/métodos , Aceleradores de Partículas , Monitoramento de Radiação/métodos , Cinza Radioativa
10.
Radiat Res ; 174(2): 137-45, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20681780

RESUMO

The detection of (41)Ca atoms in tooth enamel using accelerator mass spectrometry is suggested as a method capable of reconstructing thermal neutron exposures from atomic bomb survivors in Hiroshima and Nagasaki. In general, (41)Ca atoms are produced via thermal neutron capture by stable (40)Ca. Thus any (41)Ca atoms present in the tooth enamel of the survivors would be due to neutron exposure from both natural sources and radiation from the bomb. Tooth samples from five survivors in a control group with negligible neutron exposure were used to investigate the natural (41)Ca content in tooth enamel, and 16 tooth samples from 13 survivors were used to estimate bomb-related neutron exposure. The results showed that the mean (41)Ca/Ca isotope ratio was (0.17 +/- 0.05) x 10(-14) in the control samples and increased to 2 x 10(-14) for survivors who were proximally exposed to the bomb. The (41)Ca/Ca ratios showed an inverse correlation with distance from the hypocenter at the time of the bombing, similar to values that have been derived from theoretical free-in-air thermal-neutron transport calculations. Given that gamma-ray doses were determined earlier for the same tooth samples by means of electron spin resonance (ESR, or electron paramagnetic resonance, EPR), these results can serve to validate neutron exposures that were calculated individually for the survivors but that had to incorporate a number of assumptions (e.g. shielding conditions for the survivors).


Assuntos
Radioisótopos de Cálcio/análise , Esmalte Dentário/efeitos da radiação , Armas Nucleares , Feminino , Meia-Vida , Humanos , Japão , Masculino , Nêutrons , Aceleradores de Partículas , Proteção Radiológica/métodos , Sobreviventes , Dente/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA