Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(35): 24060-24068, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37655455

RESUMO

To control the nitriding effect, which is used to enhance the mechanical properties of surfaces, a fundamental understanding of this effect is required. Modern quantum-mechanical simulation methods make it almost impossible to perform cost effective and reliable studies on the mechanisms of the influence of nitrogen on surfaces. In this work, based on density functional theory calculations, the nitriding effect on the structure and mechanical properties of titanized steel was studied using a FeTi model. Two cases of the nitrogen presence in the Fe-Ti crystal are considered: uniform distribution and nitrogen clustering. Based on the formation energy calculations and the crystal orbital Hamilton population analysis, it is found that higher stability of FeTi is achieved at low concentrations of nitrogen up to 5.4% when nitrogen atoms are uniformly distributed, while upon clustering of nitrogen, FeTi becomes more stable at higher concentrations of nitrogen from 3.7% to 7.4%. The mechanical properties of nitrogen-containing FeTi suggest that Young's modulus and shear modulus increase with an increase of the concentration of nitrogen up to 5.4%. These findings not only deepen our fundamental understanding of the nitriding effect in titanized Fe-based steels but also offer valuable insights essential for carrying out an experimental study of various end products such as technical machine parts or medical implants, endowed with improved surface properties.

2.
Phys Chem Chem Phys ; 22(20): 11307-11313, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32400830

RESUMO

The recently fabricated two-dimensional phosphorus carbide (PC) has been proposed for application in different nanodevices such as nanoantennas and field-effect transistors. However, the effect of ambient molecules on the properties of PC and, hence, the productivity of PC-based devices is still unknown. Herein a first-principles investigation is performed to study the most structurally stable α- and ß-PC allotropes upon their interaction with environmental molecules, including NH3, NO, NO2, H2O, and O2. It is predicted that NH3, H2O, and O2 are physisorbed on α- and ß-PC while NO and NO2 may easily form a covalent bond with the PC. Importantly, NO and NO2 possess low adsorption energies on PC which compared to these on graphene and phosphorene. Moreover, both molecules are strong acceptors to PC with a giant charge transfer of ∼1 e per molecule. For all the considered molecules PC is found to be more sensitive compared to graphene and phosphorene. The present work provides useful insight into the effects of environmental molecules on the structure and electronic properties of α- and ß-PC, which may be important for their manufacturing, storage, and application in gas sensors and electronic devices.

3.
Chemphyschem ; 20(4): 575-580, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30556634

RESUMO

Arsenene, a new group-V two-dimensional (2D) semiconducting material beyond phosphorene and antimonene, has recently gained an increasing attention owning to its various interesting properties which can be altered or intentionally functionalized by chemical reactions with various molecules. This work provides a systematic study on the interactions of arsenene with the small molecules, including H2 , NH3 , O2 , H2 O, NO, and NO2 . It is predicted that O2 , H2 O, NO, and NO2 are strong acceptors, while NH3 serves as a donor. Importantly, it is shown a negligible charge transfer between H2 and arsenene which is ten times lower than that between H2 and phosphorene and about thousand times lower than that between H2 and InSe and antimonene. The calculated energy barrier for O2 splitting on arsenene is found to be as low as 0.67 eV. Thus, pristine arsenene may easily oxidize in ambient conditions as other group V 2D materials. On the other hand, the acceptor role of H2 O on arsenene, similarly to the cases of antimonene and InSe, may help to prevent the proton transfer between H2 O and O- species by forming acids, which suppresses further structural degradation of arsenene. The structural decomposition of the 2D layers upon interaction with the environment may be avoided due to the acceptor role of H2 O molecules as the study predicts from the comparison of common group V 2D materials. However, the protection for arsenene is still required due to its strong interaction with other small environmental molecules. The present work renders the possible ways to protect arsenene from structure degradation and to modulate its electronic properties, which is useful for the material synthesis, storage and applications.

4.
Nanotechnology ; 29(21): 215704, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29488901

RESUMO

Heterostructures composed of dissimilar two-dimensional nanomaterials can have nontrivial physical and mechanical properties which are potentially useful in many applications. Interestingly, in some cases, it is possible to create heterostructures composed of weakly and strongly stretched domains with the same chemical composition, as has been demonstrated for some polymer chains, DNA, and intermetallic nanowires supporting this effect of two-phase stretching. These materials, at relatively strong tension forces, split into domains with smaller and larger tensile strains. Within this region, average strain increases at constant tensile force due to the growth of the domain with the larger strain, at the expense of the domain with smaller strain. Here, the two-phase stretching phenomenon is described for graphene nanoribbons with the help of molecular dynamics simulations. This unprecedented feature of graphene that is revealed in our study is related to the peculiarities of nucleation and the motion of the domain walls separating the domains of different elastic strain. It turns out that the loading-unloading curves exhibit a hysteresis-like behavior due to the energy dissipation during the domain wall nucleation and motion. Here, we put forward the idea of implementing graphene nanoribbons as elastic dampers, efficiently converting mechanical strain energy into heat during cyclic loading-unloading through elastic extension where domains with larger and smaller strains coexist. Furthermore, in the regime of two-phase stretching, graphene nanoribbon is a heterostructure for which the fraction of domains with larger and smaller strain, and consequently its physical and mechanical properties, can be tuned in a controllable manner by applying elastic strain and/or heat.

5.
Materials (Basel) ; 16(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37297274

RESUMO

Composite materials are gaining increasing attention from researchers worldwide due to their ability to offer tailored properties for various technical challenges. One of these promising fields is metal matrix composites, including carbon-reinforced metals and alloys. These materials allow for the reduction of density while simultaneously enhancing their functional properties. This study is focused on the Pt-CNT composite, its mechanical characteristics, and structural features under uniaxial deformation depending on temperature and mass fractions of carbon nanotube (CNT). The mechanical behavior of platinum reinforced with carbon nanotubes of diameters varying in the interval 6.62-16.55 Å under uniaxial tension and compression deformation has been studied by the molecular dynamics method. Simulations for tensile and compression deformations have been done for all specimens at different temperatures (viz. 300 K, 500 K, 700 K, 900 K, 1100 K, and 1500 K). The calculated mechanical characteristics allow us to conclude that, compared to pure platinum, the Young's modulus increased by about 60%. The results indicate that yield and tensile strength values decreases with increase in temperature for all simulation blocks. This increase was due to the inherent high axial rigidity of CNTs. In this work, these characteristics are calculated for the first time for Pt-CNT. It can be concluded that CNTs can be an effective reinforcing material for composites based on a metal matrix under tensile strain.

6.
J Phys Chem Lett ; 14(5): 1148-1155, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36705575

RESUMO

A two-dimensional (2D) monolayer of a novel ternary nitride Zn2VN3 is computationally designed, and its dynamical and thermal stability is demonstrated. A synthesis strategy is proposed based on experimental works on production of ternary nitride thin films, calculations of formation and exfoliation energies, and ab initio molecular dynamics simulations. A comprehensive characterization of 2D Zn2VN3, including investigation of its optoelectronic and mechanical properties, is conducted. It is shown that 2D Zn2VN3 is a semiconductor with an indirect band gap of 2.75 eV and a high work function of 5.27 eV. Its light absorption covers visible and ultraviolet regions. The band gap of 2D Zn2VN3 is found to be well tunable by applied strain. At the same time 2D Zn2VN3 possesses high stability against mechanical loads, point defects, and environmental impacts. Considering the unique properties found for 2D Zn2VN3, it can be used for application in optoelectronic and straintronic nanodevices.

7.
Materials (Basel) ; 16(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005128

RESUMO

This paper presents the results of molecular dynamic modeling, revealing that inserting confined graphene layers into copper crystal reduces the thermal conductivity of the whole composite, and the coefficient of thermal conductivity κ decreases upon an increase in the number of graphene layers. The injection of one, two, and three layers of 15 nm graphene leads to a change in the coefficient of thermal conductivity from 380 W/(m·K) down to 205.9, 179.1, and 163.6 W/(m·K), respectively. Decreasing the length of graphene layers leads to a decrease in the density of defects on which heat is dissipated. With one, two, and three layers of 8 nm graphene, the coefficient of thermal conductivity of the composite is equal to 272.6, 246.8, and 240.8 W/(m·K), appropriately. Meanwhile the introduction of an infinite graphene layer results in the growth of κ to 414.2-803.3 W/(m·K).

8.
Materials (Basel) ; 15(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36013733

RESUMO

Delocalized nonlinear vibrational modes (DNVMs) are exact solutions of the equations of motion, and therefore, DNVMs exist at any vibration amplitude and do not depend on interaction potentials. For the first time, modulation instability of four one-component three-dimensional DNVMs is studied in a single crystal of fcc copper with the use of methods of molecular dynamics. DNVMs frequencies, evolution of stresses, kinetic and potential energies, and heat capacity depending on the oscillation amplitudes are analyzed. It is found that all four DNVMs are characterized by a hard-type anharmonicity. Modulation instability of DNVMs results in a formation of chaotic discrete breathers (DBs) with frequency above the upper edge of the phonon spectrum of the crystal. The lifetime of chaotic DBs is found to be in the range of 30-100 ps. At low-oscillation frequencies, longer-lived DBs are formed. The growth of modulation instability leads to an increase in mechanical stresses and a decrease in the heat capacity of the crystal. The results obtained in this work enrich our understanding of the influence of the modulation instability of DNVMs on the properties of metals.

9.
Materials (Basel) ; 15(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36079279

RESUMO

Stanene, composed of tin atoms, is a member of 2D-Xenes, two-dimensional single element materials. The properties of the stanene can be changed and improved by applying deformation, and it is important to know the range of in-plane deformation that the stanene can withstand. Using the Tersoff interatomic potential for calculation of phonon frequencies, the range of stability of planar stanene under uniform in-plane deformation is analyzed and compared with the known data for graphene. Unlike atomically flat graphene, stanene has a certain thickness (buckling height). It is shown that as the tensile strain increases, the thickness of the buckled stanene decreases, and when a certain tensile strain is reached, the stanene becomes absolutely flat, like graphene. Postcritical behaviour of stanene depends on the type of applied strain: critical tensile strain leads to breaking of interatomic bonds and critical in-plane compressive strain leads to rippling of stanene. It is demonstrated that application of shear strain reduces the range of stability of stanene. The existence of two energetically equivalent states of stanene is shown, and consequently, the possibility of the formation of domains separated by domain walls in the stanene is predicted.

10.
Materials (Basel) ; 15(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36295327

RESUMO

In this work, the mass transfer along an octahedral channel in an fcc copper single crystal is studied for the first time using the method of molecular dynamics. It is found that the initial position of the bombarding atom, outside or inside the crystal, does not noticeably affect the dynamics of its motion. The higher the initial velocity of the bombarding atom, the deeper its penetration into the material. It is found out how the place of entry of the bombarding atom into the channel affects its further dynamics. The greatest penetration depth and the smallest dissipation of kinetic energy occurs when the atom moves exactly in the center of the octahedral channel. The deviation of the bombarding atom from the center of the channel leads to the appearance of other velocity components perpendicular to the initial velocity vector and to an increase in its energy dissipation. Nevertheless, the motion of an atom along the channel is observed even when the entry point deviates from the center of the channel by up to 0.5 Å. The dissipated kinetic energy spent on the excitation of the atoms forming the octahedral channel is nearly proportional to the deviation from the center of the channel. At sufficiently high initial velocities of the bombarding atom, supersonic crowdions are formed, moving along the close-packed direction ⟨1¯10⟩, which is perpendicular to the direction of the channel. The results obtained are useful for understanding the mechanism of mass transfer during ion implantation and similar experimental techniques.

11.
Phys Rev E ; 105(6-1): 064204, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35854569

RESUMO

Delocalized nonlinear vibrational modes (DNVMs) supported in crystal lattices are exact solutions to the equations of motion of particles that are determined by the symmetry of the lattices. DNVMs exist for any vibration amplitudes and for any interparticle potentials. It is important to know how the properties of DNVMs depend on the parameters of interparticle potentials. In this work, we analyze the effect of the Morse potential stiffness on the properties of one-component DNVMs in a face-centered cubic (fcc) lattice. In particular, the frequencies, kinetic and potential energy, mechanical stress, and elastic constants of DNVMs in a large range of vibration amplitudes are considered. Frequency-amplitude dependency obtained for the Morse crystal is compared with that obtained earlier for copper by using the potentials of the many-body embedded atom method. The properties of DNVMs are mainly dictated by their symmetry and are less influenced by the interparticle potentials. It is revealed that at low and high stiffness of interparticle bonds, different sets of DNVMs have frequencies above the phonon band. This is important to predict the possible types of discrete breathers supported by the fcc lattice. The results obtained in the work enrich the understanding of the influence of interparticle potentials on the properties of the studied family of exact dynamic solutions.

12.
Phys Rev E ; 102(6-1): 062148, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33465976

RESUMO

The equilibration of sinusoidally modulated distribution of the kinetic temperature is analyzed in the ß-Fermi-Pasta-Ulam-Tsingou chain with different degrees of nonlinearity and for different wavelengths of temperature modulation. Two different types of initial conditions are used to show that either one gives the same result as the number of realizations increases and that the initial conditions that are closer to the state of thermal equilibrium give faster convergence. The kinetics of temperature equilibration is monitored and compared to the analytical solution available for the linear chain in the continuum limit. The transition from ballistic to diffusive thermal conductivity with an increase in the degree of anharmonicity is shown. In the ballistic case, the energy equilibration has an oscillatory character with an amplitude decreasing in time, and in the diffusive case, it is monotonous in time. For smaller wavelength of temperature modulation, the oscillatory character of temperature equilibration remains for a larger degree of anharmonicity. For a given wavelength of temperature modulation, there is such a value of the anharmonicity parameter at which the temperature equilibration occurs most rapidly.

13.
Materials (Basel) ; 12(23)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795238

RESUMO

Carbon nanotubes (CNTs) have record high tensile strength and Young's modulus, which makes them ideal for making super strong yarns, ropes, fillers for composites, solid lubricants, etc. The mechanical properties of CNT bundles have been addressed in a number of experimental and theoretical studies. The development of efficient computational methods for solving this problem is an important step in the design of new CNT-based materials. In the present study, an atomistic chain model is proposed to analyze the mechanical response of CNT bundles under plane strain conditions. The model takes into account the tensile and bending rigidity of the CNT wall, as well as the van der Waals interactions between walls. Due to the discrete character of the model, it is able to describe large curvature of the CNT wall and the fracture of the walls at very high pressures, where both of these problems are difficult to address in frame of continuum mechanics models. As an example, equilibrium structures of CNT crystal under biaxial, strain controlled loading are obtained and their thermal stability is analyzed. The obtained results agree well with previously reported data. In addition, a new equilibrium structure with four SNTs in a translational cell is reported. The model offered here can be applied with great efficiency to the analysis of the mechanical properties of CNT bundles composed of single-walled or multi-walled CNTs under plane strain conditions due to considerable reduction in the number of degrees of freedom.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA