Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 14(3): e0214250, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30921410

RESUMO

BACKGROUND: Mitochondrial disease is a family of genetic disorders characterized by defects in the generation and regulation of energy. Epilepsy is a common symptom of mitochondrial disease, and in the vast majority of cases, refractory to commonly used antiepileptic drugs. Ferroptosis is a recently-described form of iron- and lipid-dependent regulated cell death associated with glutathione depletion and production of lipid peroxides by lipoxygenase enzymes. Activation of the ferroptosis pathway has been implicated in a growing number of disorders, including epilepsy. Given that ferroptosis is regulated by balancing the activities of glutathione peroxidase-4 (GPX4) and 15-lipoxygenase (15-LO), targeting these enzymes may provide a rational therapeutic strategy to modulate seizure. The clinical-stage therapeutic vatiquinone (EPI-743, α-tocotrienol quinone) was reported to reduce seizure frequency and associated morbidity in children with the mitochondrial disorder pontocerebellar hypoplasia type 6. We sought to elucidate the molecular mechanism of EPI-743 and explore the potential of targeting 15-LO to treat additional mitochondrial disease-associated epilepsies. METHODS: Primary fibroblasts and B-lymphocytes derived from patients with mitochondrial disease-associated epilepsy were cultured under standardized conditions. Ferroptosis was induced by treatment with the irreversible GPX4 inhibitor RSL3 or a combination of pharmacological glutathione depletion and excess iron. EPI-743 was co-administered and endpoints, including cell viability and 15-LO-dependent lipid oxidation, were measured. RESULTS: EPI-743 potently prevented ferroptosis in patient cells representing five distinct pediatric disease syndromes with associated epilepsy. Cytoprotection was preceded by a dose-dependent decrease in general lipid oxidation and the specific 15-LO product 15-hydroxyeicosatetraenoic acid (15-HETE). CONCLUSIONS: These findings support the continued clinical evaluation of EPI-743 as a therapeutic agent for PCH6 and other mitochondrial diseases with associated epilepsy.


Assuntos
Carbolinas/farmacologia , Epilepsia/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Doenças Mitocondriais/tratamento farmacológico , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/antagonistas & inibidores , Ubiquinona/análogos & derivados , Araquidonato 15-Lipoxigenase/metabolismo , Linhagem Celular , Epilepsia/metabolismo , Epilepsia/patologia , Humanos , Ácidos Hidroxieicosatetraenoicos/metabolismo , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ubiquinona/farmacologia
2.
PLoS One ; 13(8): e0201369, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30110365

RESUMO

Ferroptosis is a form of programmed cell death associated with inflammation, neurodegeneration, and ischemia. Vitamin E (alpha-tocopherol) has been reported to prevent ferroptosis, but the mechanism by which this occurs is controversial. To elucidate the biochemical mechanism of vitamin E activity, we systematically investigated the effects of its major vitamers and metabolites on lipid oxidation and ferroptosis in a striatal cell model. We found that a specific endogenous metabolite of vitamin E, alpha-tocopherol hydroquinone, was a dramatically more potent inhibitor of ferroptosis than its parent compound, and inhibits 15-lipoxygenase via reduction of the enzyme's non-heme iron from its active Fe3+ state to an inactive Fe2+ state. Furthermore, a non-metabolizable isosteric analog of vitamin E which retains antioxidant activity neither inhibited 15-lipoxygenase nor prevented ferroptosis. These results call into question the prevailing model that vitamin E acts predominantly as a non-specific lipophilic antioxidant. We propose that, similar to the other lipophilic vitamins A, D and K, vitamin E is instead a pro-vitamin, with its quinone/hydroquinone metabolites responsible for its anti-ferroptotic cytoprotective activity.


Assuntos
Apoptose/efeitos dos fármacos , Araquidonato 15-Lipoxigenase/metabolismo , Ferro/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Vitaminas/farmacologia , alfa-Tocoferol/análogos & derivados , Animais , Linhagem Celular , Citoproteção/efeitos dos fármacos , Camundongos , alfa-Tocoferol/farmacologia
3.
ACS Med Chem Lett ; 4(1): 113-7, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24900571

RESUMO

Potent imidazopyridine-based inhibitors of fatty acid synthase (FASN) are described. The compounds are shown to have antiviral (HCV replicon) activities that track with their biochemical activities. The most potent analogue (compound 19) also inhibits rat FASN and inhibits de novo palmitate synthesis in vitro (cell-based) as well as in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA