Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 30(8): 12918-12928, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472917

RESUMO

The angular dependance of the transverse Raman scattering in potassium dihydrogen phosphate (KDP) and its deuterated analogue (DKDP) for the entire range of crystal configurations suitable for laser beam polarization control has been investigated via experimental and modeling tools. This work was made possible by simultaneously rotating a spherical sample and the pump polarization to effectively measure the angular dependance of the transverse Raman signal in 360°. This novel method, which is applicable for the investigation of the Raman scattering in optically anisotropic materials, demonstrates that the spontaneous Raman scattering signal exhibits strong angular dependence that is modulated by depolarization and polarization rotation effects generated as the Raman signal traverses the material due to its birefringence. The results show that the total signal generated by the pump beam is the sum of the signals generated by the two components that have polarization parallel and orthogonal to the optic axis. The peak signal intensity, which is of importance for high-power laser applications, depends on the orientation of the optic axis and can vary by a factor of about 2. The excellent agreement between experimental data and modeling results validates the associated models and enables one to consider optimal crystal cut designs for specific applications.

2.
Appl Opt ; 57(32): 9571-9583, 2018 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-30461737

RESUMO

Multibeam lasers often require an output beam balance that specifies the degree of simultaneity of the laser output energy, instantaneous power, or instantaneous irradiance (power per unit area). This work describes the general problem of balancing a multibeam laser. Specific techniques used to balance the output power of the 60-beam pulsed OMEGA Laser System are discussed along with a measured reduction of beam-to-beam imbalance. In particular, the square-pulse distortion induced by a simple saturating amplifier operating with its output at some fraction of its saturation fluence is derived, and a method to exchange gain between saturated amplifiers in a single beam that have different saturation fluences to adjust balance is described.

4.
Phys Rev Lett ; 117(2): 025001, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27447511

RESUMO

A record fuel hot-spot pressure P_{hs}=56±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ∼60% of the value required for ignition [A. Bose et al., Phys. Rev. E 93, 011201(R) (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.

5.
Sci Rep ; 10(1): 16283, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004935

RESUMO

The Raman tensor of the dominant A1 modes of the nonlinear optical crystalline material potassium dihydrogen phosphate and its 70% deuterated analog have been ascertained. Challenges in determining the A1 mode tensor element values based on previous reports have been resolved using a specially designed experimental setup that makes use of spherical crystal samples. This novel experimental design enabled the determination of measurement artifacts, including polarization rotation of the pump and/or scattered light propagating through the sample and the contribution of additional overlapping phonon modes, which have hindered previous efforts. Results confirmed that the polarization tensor is diagonal, and matrix elements were determined with high accuracy.

6.
Rev Sci Instrum ; 91(1): 015101, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32012604

RESUMO

A specialized experimental configuration was developed to allow for more-accurate characterization of the spontaneous Raman scattering properties in anisotropic materials. This need stems from the challenges, arising from the complexity of light propagation, in obtaining accurate measurements of the angular dependence of the Raman scattering cross section in birefringent materials. The nonlinear optical material KH2PO4 (KDP) is used as a model medium. This study is motivated by the need to improve our understanding and management of transverse stimulated Raman scattering in KDP crystals and its deuterated analog, DKDP, typically used for frequency conversion and polarization control in large-aperture laser systems. Key to this experimental platform is the use of high-quality spherical samples that enable one to measure the Raman scattering cross section in a wide range of geometries using only a single sample. The effect of polarization rotation of both the pump light and the collected Raman signal must be carefully considered in data analysis and can give rise to artifacts, which can, in part, be mitigated by reducing the input and collection cone angles.

7.
Sci Rep ; 9(1): 16435, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712643

RESUMO

We investigate the damage resistance of saturated and unsaturated liquid crystals (LC's) under a wide range of laser excitation conditions, including 1053-nm pulse durations between 600 fs and 1.5 ns and nanosecond pulse excitation at 351 nm and 532 nm. This study explores the relationship between the LC's resistance to laser-induced breakdown (damage) and the electronic structure (π-electron delocalization) of the constituent molecules. The laser-induced damage threshold at all wavelengths and pulse durations was consistently higher in saturated materials than in their unsaturated counterparts. The wavelength's dependence in the results suggests that the energy coupling process that leads to laser-induced breakdown is governed by the energy separation between the ground state and the first and second excited states, while the pulse duration's dependence in the results reveals the important role of electron relaxation between the excited states. A qualitative description was developed to interpret the experimental observations.

8.
Opt Express ; 14(22): 10921-9, 2006 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19529505

RESUMO

The damage morphology produced by high-power, short-pulse lasers on multilayer dielectric (MLD) gratings has been closely examined. An unusual ripple formation arises under specific laser fluence conditions and produces a bright diffractive effect. A single irradiation does not produce this morphology, proving that it is a cumulative effect requiring multiple laser shots on a test site. The period of this microstructure is found to be between 2.0 and 2.4 mum. The ripple orientation varies across the test site. Varying several experimental conditions such as pulse length, beam polarization and angle of incidence still produces this periodic microstructure, though not always efficiently. This morphology is not seen on MLD stacks or other homogeneous samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA