Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 127 Suppl: S48-55, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22925545

RESUMO

This paper describes how to use sectoral planning information from forestry to predict and up-scale information on Climate Change sensitive forest development types for potential afforestation areas. The method was developed and applied in the frame of the project RegioPower with focus on the case study region 'Oberes Elbtal-Osterzgebirge'. The data for our study was taken from forest management planning at level of the Federal State of Saxony, Germany. Here, a silvicultural system is implemented, which describes best practices to develop our actual forests into Climate Change adapted forest development types. That includes the selection of drought resistant tree species, a broad range of tree species mixtures per eligible forest development type and the tending, harvesting and regeneration strategies to be applied. This information however, exists only for forest areas and not for areas which could be potentially afforested. The eligibility of the forest development types within the actual forest areas depends on site information, such as nutrient potential, exposition and hydrological soil parameters. The regionalisation of the forest development types to landscape scale had to be based on topographical parameters from the digital elevation model and hydrological soil parameters from soil mapping. In result, we could provide maps for regional planning and decision making with spatially explicit information on the eligible forest development types based on forest management planning information. These maps form a valuable input for testing and optimising afforestation areas with regard to improving the ability of our case study region to mitigate Climate Change effects such as water erosion or drought.


Assuntos
Mudança Climática , Agricultura Florestal/métodos
2.
J Environ Manage ; 127 Suppl: S96-S116, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23158524

RESUMO

This paper presents results of a case study in Middle Saxony, Germany, where the impact of conversion, afforestation and alternatively introduction of short rotation coppice areas on the provision of ecosystem services was tested in a spatially inexplicit and a spatially explicit way to formulate recommendations for regional planning. While the spatially inexplicit testing did not lead to clear results regarding to what degree forests or short rotation coppice areas are desirable and applicable, the spatially explicit testing revealed that an increase in the forest area or area with short rotation coppice by 29.7% in unstructured agriculturally dominated Loess regions, 14.4% in more topographically structured parts in the North-East of the model region and 23.6% in its mountainous parts would be beneficial. Potentially resulting losses in the provision of bioresources and regional economy can be considerably reduced by replacing afforestation areas with short rotation coppice. In summary, we found that the spatially explicit analysis of land use scenarios in combination with a more detailed land use classification and including an assessment of changes in land use pattern gave us an improved basis for assessing different possible planning strategies and to enhance the communication between forest management planners and regional planners.


Assuntos
Ecossistema , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA