Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Bioorg Med Chem Lett ; 26(19): 4743-4747, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27575474

RESUMO

A series of benzimidazole analogs have been synthesized to improve the profile of the previous lead compounds tarocin B and 1. The syntheses, structure-activity relationships, and selected biochemical data of these analogs are described. The optimization efforts allowed the identification of 21, a fluoro-substituted benzimidazole, exhibiting potent TarO inhibitory activity and typical profile for a wall teichoic acid (WTA) biosynthesis inhibitor. Compound 21 displayed a potent synergistic and bactericidal effect in combination with imipenem against diverse methicillin-resistant Staphylococci.


Assuntos
Antibacterianos/farmacologia , Benzimidazóis/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Ácidos Teicoicos/antagonistas & inibidores , Animais , Antibacterianos/química , Benzimidazóis/química , Testes de Sensibilidade Microbiana , Ratos , Relação Estrutura-Atividade , Ácidos Teicoicos/biossíntese
2.
Bioorg Med Chem Lett ; 26(16): 3999-4002, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27436582

RESUMO

The widespread emergence of methicillin-resistant Staphylococcus aureus (MRSA) has dramatically eroded the efficacy of current ß-lactam antibiotics and created an urgent need for novel treatment options. Using an S. aureus phenotypic screening strategy, we have identified small molecule early stage wall teichoic acid (WTA) pathway-specific inhibitors predicted to be chemically synergistic with ß-lactams. These previously disclosed inhibitors, termed tarocins, demonstrate by genetic and biochemical means inhibition of TarO, the first step in WTA biosynthesis. Tarocins demonstrate potent bactericidal synergy in combination with broad spectrum ß-lactam antibiotics across diverse clinical isolates of methicillin-resistant Staphylococci. The synthesis and structure-activity relationships (SAR) of a tarocin series will be detailed. Tarocins and other WTA inhibitors may provide a rational strategy to develop Gram-positive bactericidal ß-lactam combination agents active against methicillin-resistant Staphylococci.


Assuntos
Antibacterianos/química , Ácidos Teicoicos/metabolismo , beta-Lactamas/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Avaliação Pré-Clínica de Medicamentos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , beta-Lactamas/metabolismo
3.
Vaccine ; 41(5): 1142-1152, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36621410

RESUMO

BACKGROUND: Pneumococcal disease (PD) remains a major health concern with considerable morbidity and mortality in children. Currently licensed pneumococcal conjugate vaccines (PCVs) confer protection against PD caused by most vaccine serotypes, but non-vaccine serotypes contribute to residual disease. V114 is a 15-valent PCV containing all 13 serotypes in Prevnar 13™ (PCV13) and additional serotypes 22F and 33F. This pivotal phase 3 study compared safety and immunogenicity of V114 and PCV13. METHODS: 1720 healthy infants were randomized 1:1 to receive a 4-dose regimen of V114 or PCV13 concomitantly with other routine pediatric vaccines. Safety was evaluated after each dose as proportion of participants with adverse events (AEs). Serotype-specific anti-pneumococcal immunoglobulin G (IgG) was measured at 1-month post-dose 3 (PD3), pre-dose 4, and 1-month post-dose 4 (PD4). IgG response rates, geometric mean concentrations (GMCs), and opsonophagocytic activity (OPA) were compared between vaccination groups. RESULTS: The proportion, maximum intensity, and duration of injection-site, systemic, and serious AEs were generally comparable between V114 and PCV13 groups. In comparison to PCV13, V114 met non-inferiority criteria for all 15 serotypes based on IgG response rates at PD3. V114 met non-inferiority criteria by IgG GMCs for all serotypes at PD3 and PD4, except for serotype 6A at PD3. V114-induced antibodies had bactericidal activity as assessed by OPA. Further, V114 met superiority criteria for shared serotype 3 and unique serotypes 22F and 33F compared to PCV13 by serotype-specific IgG GMCs at both PD3 and PD4. Immunogenicity of concomitantly administered routine pediatric vaccines was comparable in V114 and PCV13 groups. CONCLUSIONS: In healthy infants, V114 displays acceptable safety and tolerability profiles and generates comparable immune responses to PCV13. V114 also met superiority criteria for serotypes 3, 22F, and 33F. These results support use of V114 for prevention of PD as part of routine infant vaccination schedules. TRIAL REGISTRATION: ClinicalTrials.gov: NCT03893448; EudraCT: 2018-004109-21.


Assuntos
Anticorpos Antibacterianos , Infecções Pneumocócicas , Humanos , Lactente , Criança , Vacinas Conjugadas , Imunoglobulina G , Streptococcus pneumoniae , Vacina Pneumocócica Conjugada Heptavalente , Vacinas Pneumocócicas , Método Duplo-Cego
4.
J Med Chem ; 60(9): 3851-3865, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28322556

RESUMO

We describe our optimization efforts to improve the physicochemical properties, solubility, and off-target profile of 1, an inhibitor of TarO, an early stage enzyme in the biosynthetic pathway for wall teichoic acid (WTA) synthesis. Compound 1 displayed a TarO IC50 of 125 nM in an enzyme assay and possessed very high lipophilicity (clogP = 7.1) with no measurable solubility in PBS buffer. Structure-activity relationship (SAR) studies resulted in a series of compounds with improved lipophilic ligand efficiency (LLE) consistent with the reduction of clogP. From these efforts, analog 9 was selected for our initial in vivo study, which in combination with subefficacious dose of imipenem (IPM) robustly lowered the bacterial burden in a neutropenic Staphylococci murine infection model. Concurrent with our in vivo optimization effort using 9, we further improved LLE as exemplified by a much more druglike analog 26.


Assuntos
Lipídeos/química , Bibliotecas de Moléculas Pequenas , Animais , Feminino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Solubilidade , Relação Estrutura-Atividade
5.
Cancer Biol Ther ; 5(4): 419-26, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16575208

RESUMO

We used gene expression profiling to probe differences in transcriptional output between 15 panels of colon tumor and matched normal colon tissues. This analysis revealed that GPR49, an orphan G Protein-Coupled Receptor (GPCR) is overexpressed in 66% (10/15) colon tumors compared with normal colon tissues. Subsequent analysis of an additional 39 sets of matched normal and tumor colon tissues by real-time quantitative reverse transcriptase confirmed the upregulation of this receptor. The differential expression of GPR49 between normal and tumor tissue was significant (p > 0.001). GPR49 was upregulated in 25 of 39 (64%) colon primary tumor tissues. In addition to colon tumors, GPR49 was also found to be upregulated in 18 of 33 (53%) ovarian primary tumor tissues analyzed by RT-PCR. Moreover, the expression level of GPR49 in colon and ovarian tumors increased in more advanced tumors suggesting a role for the receptor in tumor progression. The selective overexpression of GPR49 in tumor tissues was further illustrated by specific immunohistochemical staining of colon and ovarian tumor tissues, a finding that correlates with the mRNA expression of the receptor. In addition, expression of GPR49 induced transformation in a ligand-dependent manner and Knockdown of GPR49 mRNA level induced apoptosis in colon tumor cells. These novel findings provide a foundation for further studies and suggest a potential role for GPR49 in tumorigenesis.


Assuntos
Neoplasias do Colo/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Apoptose , Linhagem Celular Tumoral , Clonagem Molecular , Feminino , Fibroblastos/metabolismo , Humanos , Imuno-Histoquímica , Ligantes , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Sci Transl Med ; 8(329): 329ra32, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26962156

RESUMO

The widespread emergence of methicillin-resistant Staphylococcus aureus (MRSA) has dramatically eroded the efficacy of current ß-lactam antibiotics and created an urgent need for new treatment options. We report an S. aureus phenotypic screening strategy involving chemical suppression of the growth inhibitory consequences of depleting late-stage wall teichoic acid biosynthesis. This enabled us to identify early-stage pathway-specific inhibitors of wall teichoic acid biosynthesis predicted to be chemically synergistic with ß-lactams. We demonstrated by genetic and biochemical means that each of the new chemical series discovered, herein named tarocin A and tarocin B, inhibited the first step in wall teichoic acid biosynthesis (TarO). Tarocins do not have intrinsic bioactivity but rather demonstrated potent bactericidal synergy in combination with broad-spectrum ß-lactam antibiotics against diverse clinical isolates of methicillin-resistant staphylococci as well as robust efficacy in a murine infection model of MRSA. Tarocins and other inhibitors of wall teichoic acid biosynthesis may provide a rational strategy to develop Gram-positive bactericidal ß-lactam combination agents active against methicillin-resistant staphylococci.


Assuntos
Proteínas de Bactérias/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Parede Celular/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Ácidos Teicoicos/biossíntese , beta-Lactamas/farmacologia , Animais , Parede Celular/efeitos dos fármacos , Dicloxacilina/farmacologia , Dicloxacilina/uso terapêutico , Feminino , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Modelos Moleculares , Fenótipo , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Resultado do Tratamento
7.
ACS Infect Dis ; 1(1): 59-72, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-26878058

RESUMO

Steadily increasing antifungal drug resistance and persistent high rates of fungal-associated mortality highlight the dire need for the development of novel antifungals. Characterization of inhibitors of one enzyme in the GPI anchor pathway, Gwt1, has generated interest in the exploration of targets in this pathway for further study. Utilizing a chemical genomics-based screening platform referred to as the Candida albicans fitness test (CaFT), we have identified novel inhibitors of Gwt1 and a second enzyme in the glycosylphosphatidylinositol (GPI) cell wall anchor pathway, Mcd4. We further validate these targets using the model fungal organism Saccharomyces cerevisiae and demonstrate the utility of using the facile toolbox that has been compiled in this species to further explore target specific biology. Using these compounds as probes, we demonstrate that inhibition of Mcd4 as well as Gwt1 blocks the growth of a broad spectrum of fungal pathogens and exposes key elicitors of pathogen recognition. Interestingly, a strong chemical synergy is also observed by combining Gwt1 and Mcd4 inhibitors, mirroring the demonstrated synthetic lethality of combining conditional mutants of GWT1 and MCD4. We further demonstrate that the Mcd4 inhibitor M720 is efficacious in a murine infection model of systemic candidiasis. Our results establish Mcd4 as a promising antifungal target and confirm the GPI cell wall anchor synthesis pathway as a promising antifungal target area by demonstrating that effects of inhibiting it are more general than previously recognized.

8.
J Biomol Screen ; 9(4): 309-21, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15191648

RESUMO

Most of the protein kinase inhibitors being developed are directed toward the adenosine triphosphate (ATP) binding site that is highly conserved in many kinases. A major issue with these inhibitors is the specificity for a given kinase. Structure determination of several kinases has shown that protein kinases adopt distinct conformations in their inactive state, in contrast to their strikingly similar conformations in their active states. Hence, alternative assay formats that can identify compounds targeting the inactive form of a protein kinase are desirable. The authors describe the development and optimization of an Immobilized Metal Assay for Phosphochemicals (IMAP)-based couple d assay using PDK1 and inactive Akt-2 enzymes. PDK1 phosphorylates Akt-2 at Thr 309 in the catalytic domain, leading to enzymatic activation. Activation of Akt by PDK1 is measured by quantitating the phosphorylation of Akt-specific substrate peptide using the IMAP assay format. This IMAP-coupled assay has been formatted in a 384-well microplate format with a Z' of 0.73 suitable for high-throughput screening. This assay was evaluated by screening the biologically active sample set LOPAC trade mark and validated with the protein kinase C inhibitor staurosporine. The IC(50) value generated was comparable to the value obtained by the radioactive (33)P-gamma-ATP flashplate transfer assay. This coupled assay has the potential to identify compounds that target the inactive form of Akt and prevent its activation by PDK1, in addition to finding inhibitors of PDK1 and activated Akt enzymes.


Assuntos
Imunoensaio de Fluorescência por Polarização/métodos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Trifosfato de Adenosina/metabolismo , Humanos , Técnicas In Vitro , Metabolismo dos Lipídeos , Fosforilação , Conformação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Cancer Biol Ther ; 6(5): 755-62, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17426444

RESUMO

AKT is a key serine/threonine kinase in the PTEN/PI3K/AKT pathway(1) and activationof AKT is often observed in human cancers. To explore the role of AKT in cell survival in different tumor cells, we tested 20 human tumor cell lines for response to knockdown of AKT by small interference RNA (siRNA) and/or a kinase-dead mutant AKT. siRNA-mediated knockdown of all three AKT isoforms in tumor cell lines led to a reduction of phosphorylation of AKT substrates. Knockdown of AKT resulted in apoptosis in six out of 11 tumor cells with activated AKT. In contrast, knockdown of AKT induced apoptosis in three out of nine cell lines with a low level of active AKT. The responsiveness of the cells to knockdown of AKT was not affected by mutational status of p53 but appeared correlated with overexpression of HER2. To assess the role of individual AKT isoforms, five of the cell lines responsive to knockdown of AKT were further characterized. In ZR-75 cells, AKT1 is the predominant isoform responsible for cell proliferation and survival. Conversely, in IGROV1 cells, AKT2 plays a major role in cell proliferation, but no single isoform is essential for cell survival. Thus, the relative importance of the AKT isoforms is cell line-specific. Our data suggest that inhibiting all three AKT isoforms is necessary to elicit maximal apoptotic response in tumor cells, and the level of activated AKT is a favorable but not always reliable biomarker for preselection of responsive tumor cell lines to AKT inhibitors.


Assuntos
Apoptose/genética , Inativação Gênica/fisiologia , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Adenoviridae/genética , Western Blotting , Proliferação de Células , Sobrevivência Celular/fisiologia , Humanos , Neoplasias/genética , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
10.
J Biol Chem ; 277(31): 28118-26, 2002 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-12011061

RESUMO

Tumors evade cell death by constitutively activating cell survival pathways and suppressing intrinsic death machinery. Activation of cell survival pathways leads to transcriptional repression of genes associated with cell death and activation of ones promoting anti-apoptosis. Akt/protein kinase B phosphorylates forkhead transcription factors and prevents their nuclear localization, leading to repression of genes involved in apoptosis, such as Fas ligand (FasL). Using bioinformatic approaches, we have identified three consensus sequences for forkhead transcription factor binding in transforming growth factor beta2 (TGF-beta2) promoter. TGF-beta inhibits cell proliferation and induces apoptosis in many cell types, and acquisition of TGF-beta resistance is linked to tumorigenesis. In this study, we show that activated Akt down-regulates TGF-beta2 promoter, and sequences within the promoter that are related to consensus forkhead binding sites are necessary for repression. Forkhead factor FKHRL1 binds in vitro to the three consensus sequences and can activate TGF-beta2 promoter in normal and Akt-transformed cell lines. In human breast and pancreatic tumors, activated Akt expression correlated with down-regulation of TGF-beta 2 mRNA levels. A number of tumor cells expressing activated Akt were responsive to TGF-beta addition, indicating the presence of an intact TGF-beta-signaling pathway. These results suggest that repression of TGF-beta 2 promoter activity in cells expressing activated Akt may play a role in promoting tumorigenesis and escape from the growth-inhibitory and/or apoptotic effects of TGF-beta.


Assuntos
Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fator de Crescimento Transformador beta/genética , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Cloranfenicol O-Acetiltransferase/genética , Sequência Consenso , Fatores de Transcrição Forkhead , Regulação da Expressão Gênica/imunologia , Genes Reporter , Humanos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt , RNA Mensageiro/genética , Fator de Crescimento Transformador beta2 , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA