Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Small ; 20(27): e2303421, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38533978

RESUMO

Materials with tunable negative electromagnetic performance, i.e., where dielectric permittivity becomes negative, have long been pursued in materials research due to their peculiar electromagnetic (EM) characteristics. Here, this promising feature is reported in materials on the case of plasma-synthesized nitrogen-doped graphene sheets with tunable permittivity over a wide (1-40 GHz) frequency range. Selectively incorporated nitrogen atoms in a graphene scaffold tailor the electronic structure in a way that provides an ultra-low energy (0.5-2 eV) 2D surface plasmon excitation, leading to subunitary and negative dielectric constant values in the Ka-band, from 30 up to 40 GHz. By allowing the tailoring of structures at atomic scale, this novel plasma-based approach creates a new paradigm for designing 2D nanomaterials like nanocarbons with controllable and tunable permittivity, opening a path to the next generation of 2D metamaterials.

2.
Small ; 17(49): e2103677, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34636140

RESUMO

Mycotoxins are widespread chemical entities in the agriculture and food industries that can induce cancer growth and immune deficiency, posing a serious health threat for humankind. These hazardous compounds are produced naturally by various molds (fungi) that contaminate different food products and can be detected in cereals, nuts, spices, and other food products. However, their detection, especially at minimally harmful concentrations, remains a serious analytical challenge. This research shows that high-performing plasmonic substrates (analytical enhancement factor = 5 × 107 ) based on plasma-grown vertical hollow carbon nanotubes can be applied for immediate detection of the most toxic mycotoxins. Due to excellent sensitivity allowing operation at ppb concentrations, it is possible to collect vibrational fingerprints of aflatoxin B1 , zearalenone, alternariol, and fumonisin B1 , highlighting the key spectral differences between them using principal component analysis. Regarding time-consuming conventional methods, including thin-layer chromatography, gas chromatography, high-performance liquid chromatography, and enzyme-linked immunosorbent assay, the designed surface-enhanced Raman spectroscopy substrates provide a clear roadmap to reducing the detection time-scale of mycotoxins down to seconds.


Assuntos
Micotoxinas , Nanoestruturas , Nanotubos de Carbono , Cromatografia Líquida de Alta Pressão , Micotoxinas/análise , Análise Espectral Raman
3.
Electroanalysis ; 32(12)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-33658747

RESUMO

Contactless broadband microwave spectroscopy (a.k.a., broadband dielectric spectroscopy (BDS)) enables the accurate operando analysis of the electrical and magnetic properties without compromising the kinetic conditions of the experiment. The BDS method is sensitive to the actual electronic structure of species, and it is most relevant to redox reactions involving charge-transfer. In this paper, using BDS, we have studied and characterized the oxidation of a copper layer in a purposely built prototypical 3-D integrated circuit (3D-IC) during cycled high-temperature storage. We show that the microwave signal loss in these devices is attributable to the energy dissipation through the signal's interactions with the copper oxidation product. The results demonstrate that contactless BDS could be leveraged into an excellent metrology for applications that use metal oxide as sensing elements.

4.
Nanomaterials (Basel) ; 9(10)2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31581687

RESUMO

To unravel the influence of the temperature and plasma species on the growth of single-crystalline metal oxide nanostructures, zinc, iron, and copper foils were used as substrates for the study of nanostructure synthesis in the glow discharge of the mixture of oxygen and argon gases by a custom-made plasma-enhanced horizontal tube furnace deposition system. The morphology and microstructure of the resulting metal oxide nanomaterials were controlled by changing the reaction temperature from 300 to 600 °C. Experimentally, we confirmed that single-crystalline zinc oxide, copper oxide, and iron oxide nanostructures with tunable morphologies (including nanowires, nanobelts, etc.) can be successfully synthesized via such procedure. A plausible growth mechanism for the synthesis of metal oxide nanostructures under the plasma-based process is proposed and supported by the nanostructure growth modelling. The results of this work are generic, confirmed on three different types of materials, and can be applied for the synthesis of a broader range of metal oxide nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA