Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ann Rheum Dis ; 78(8): 1079-1089, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31167757

RESUMO

OBJECTIVES: Systemic lupus erythematosus (SLE) diagnosis and treatment remain empirical and the molecular basis for its heterogeneity elusive. We explored the genomic basis for disease susceptibility and severity. METHODS: mRNA sequencing and genotyping in blood from 142 patients with SLE and 58 healthy volunteers. Abundances of cell types were assessed by CIBERSORT and cell-specific effects by interaction terms in linear models. Differentially expressed genes (DEGs) were used to train classifiers (linear discriminant analysis) of SLE versus healthy individuals in 80% of the dataset and were validated in the remaining 20% running 1000 iterations. Transcriptome/genotypes were integrated by expression-quantitative trail loci (eQTL) analysis; tissue-specific genetic causality was assessed by regulatory trait concordance (RTC). RESULTS: SLE has a 'susceptibility signature' present in patients in clinical remission, an 'activity signature' linked to genes that regulate immune cell metabolism, protein synthesis and proliferation, and a 'severity signature' best illustrated in active nephritis, enriched in druggable granulocyte and plasmablast/plasma-cell pathways. Patients with SLE have also perturbed mRNA splicing enriched in immune system and interferon signalling genes. A novel transcriptome index distinguished active versus inactive disease-but not low disease activity-and correlated with disease severity. DEGs discriminate SLE versus healthy individuals with median sensitivity 86% and specificity 92% suggesting a potential use in diagnostics. Combined eQTL analysis from the Genotype Tissue Expression (GTEx) project and SLE-associated genetic polymorphisms demonstrates that susceptibility variants may regulate gene expression in the blood but also in other tissues. CONCLUSION: Specific gene networks confer susceptibility to SLE, activity and severity, and may facilitate personalised care.


Assuntos
Perfilação da Expressão Gênica/métodos , Predisposição Genética para Doença/epidemiologia , Interferon Tipo I/genética , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Adulto , Estudos de Casos e Controles , Progressão da Doença , Feminino , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , RNA Mensageiro/genética , Valores de Referência , Transcriptoma/genética , Adulto Jovem
2.
Cells ; 12(23)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067106

RESUMO

Substantial evidence highlights divergences in immune responses between men and women. Women are more susceptible to autoimmunity, whereas men suffer from the more severe presentation of autoimmune disorders. The molecular mechanism of this sexual dimorphism remains elusive. Herein, we conducted a comprehensive analysis of sex differences in whole-blood gene expression focusing on alternative splicing (AS) events in systemic lupus erythematosus (SLE), which is a prototype sex-biased disease. This study included 79 SLE patients with active disease and 58 matched healthy controls who underwent whole-blood RNA sequencing. Sex differences in splicing events were widespread, existent in both SLE and a healthy state. However, we observed distinct gene sets and molecular pathways targeted by sex-dependent AS in SLE patients as compared to healthy subjects, as well as a notable sex dissimilarity in intron retention events. Sexually differential spliced genes specific to SLE patients were enriched for dynamic cellular processes including chromatin remodeling, stress and inflammatory responses. Remarkably, the extent of sexual differences in AS in the SLE patients and healthy individuals exceeded those in gene expression. Overall, this study reveals an unprecedent variation in sex-dependent splicing events in SLE and the healthy state, with potential implications for understanding the molecular basis of sexual dimorphism in autoimmunity.


Assuntos
Processamento Alternativo , Lúpus Eritematoso Sistêmico , Humanos , Masculino , Feminino , Processamento Alternativo/genética , Autoimunidade/genética
3.
J Clin Med ; 12(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37959410

RESUMO

Progressive multifocal leukoencephalopathy (PML) is a severe demyelinating disease of the central nervous system (CNS) caused by reactivation of the polyomavirus JC (JCV) typically in immunocompromised individuals. The risk of PML among rheumatic diseases may be higher for systemic lupus erythematosus (SLE), without, however, a clear association with the type and intensity of background therapy. We present the development and outcome of PML in a 32-year-old female lupus patient under mild immunosuppressive treatment, yet with marked B-cell lymphopenia in the peripheral blood and bone marrow (<1% of total lymphocytes). Despite treatment with the immune checkpoint inhibitor pembrolizumab, the patient showed progressive neurological and brain imaging deterioration and eventually died 15 months after PML diagnosis. To unveil possible underlying genetic liabilities, whole exome sequencing was performed which identified deleterious variants in GATA2 and CDH7 genes, which both have been linked to defective T- and/or B-lymphocyte production. These findings reiterate the possible role of disease-/patient-intrinsic factors, rather than that of drug-induced immunosuppression, in driving immune dysregulation and susceptibility to PML in certain patients with SLE.

4.
Mediterr J Rheumatol ; 33(1): 94-98, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35611101

RESUMO

A remarkable, yet poorly explained feature of Systemic Lupus Erythematosus (SLE) is the propensity to flare following a preceding period of disease inactivity. The clinical burden of lupus flares is substantial since they often tend to involve multiple or major organs, and carry a near two-fold increased risk for accrual of irreversible organ damage. The cellular and molecular mechanisms underlying the progression of SLE from inactive to active state remain ill-defined. Application of novel sequencing technologies together with cellular immunology assays, have illustrated the important role of multiple types of both innate and adaptive cells and associated pathways. We have previously described significant differences in the blood transcriptome of SLE patients at active versus inactive disease, and we have also defined genome regions (domains) with co-ordinated expression of genes implicated in the disease. In the present study, we aim to decipher the cellular and molecular basis of SLE exacerbations by utilising novel single-cell sequencing approaches, which allow us to characterise the transcriptional and epigenetic landscapes of thousands of cells in the peripheral blood of patients. The significance of the study lies in the detailed characterisation of the molecular and regulatory program of immune cell subpopulations that underlie progression from inactive to active SLE. Accordingly, our results may be exploited to identify biomarkers for disease monitoring and novel therapeutic targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA