Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(23): 5974-5979, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784784

RESUMO

Thymine DNA glycosylase (TDG) is a pivotal enzyme with dual roles in both genome maintenance and epigenetic regulation. TDG is involved in cytosine demethylation at CpG sites in DNA. Here we have used molecular modeling to delineate the lesion search and DNA base interrogation mechanisms of TDG. First, we examined the capacity of TDG to interrogate not only DNA substrates with 5-carboxyl cytosine modifications but also G:T mismatches and nonmismatched (A:T) base pairs using classical and accelerated molecular dynamics. To determine the kinetics, we constructed Markov state models. Base interrogation was found to be highly stochastic and proceeded through insertion of an arginine-containing loop into the DNA minor groove to transiently disrupt Watson-Crick pairing. Next, we employed chain-of-replicas path-sampling methodologies to compute minimum free energy paths for TDG base extrusion. We identified the key intermediates imparting selectivity and determined effective free energy profiles for the lesion search and base extrusion into the TDG active site. Our results show that DNA sculpting, dynamic glycosylase interactions, and stabilizing contacts collectively provide a powerful mechanism for the detection and discrimination of modified bases and epigenetic marks in DNA.


Assuntos
DNA/química , Timina DNA Glicosilase/química , Timina DNA Glicosilase/metabolismo , Citosina/química , Citosina/metabolismo , DNA/metabolismo , Cinética , Cadeias de Markov , Simulação de Dinâmica Molecular , Conformação Proteica , Especificidade por Substrato , Termodinâmica
2.
Proc Natl Acad Sci U S A ; 113(2): 326-31, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26715749

RESUMO

Many genomes contain families of paralogs--proteins with divergent function that evolved from a common ancestral gene after a duplication event. To understand how paralogous transcription factors evolve divergent DNA specificities, we examined how the glucocorticoid receptor and its paralogs evolved to bind activating response elements [(+)GREs] and negative glucocorticoid response elements (nGREs). We show that binding to nGREs is a property of the glucocorticoid receptor (GR) DNA-binding domain (DBD) not shared by other members of the steroid receptor family. Using phylogenetic, structural, biochemical, and molecular dynamics techniques, we show that the ancestral DBD from which GR and its paralogs evolved was capable of binding both nGRE and (+)GRE sequences because of the ancestral DBD's ability to assume multiple DNA-bound conformations. Subsequent amino acid substitutions in duplicated daughter genes selectively restricted protein conformational space, causing this dual DNA-binding specificity to be selectively enhanced in the GR lineage and lost in all others. Key substitutions that determined the receptors' response element-binding specificity were far from the proteins' DNA-binding interface and interacted epistatically to change the DBD's function through DNA-induced allosteric mechanisms. These amino acid substitutions subdivided both the conformational and functional space of the ancestral DBD among the present-day receptors, allowing a paralogous family of transcription factors to control disparate transcriptional programs despite high sequence identity.


Assuntos
DNA/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo , Regulação Alostérica , Substituição de Aminoácidos , Sequência de Bases , Células HeLa , Humanos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Elementos de Resposta/genética , Especificidade por Substrato , Fatores de Transcrição/química
3.
J Biol Chem ; 291(3): 1411-26, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26553876

RESUMO

Phospholipids (PLs) are unusual signaling hormones sensed by the nuclear receptor liver receptor homolog-1 (LRH-1), which has evolved a novel allosteric pathway to support appropriate interaction with co-regulators depending on ligand status. LRH-1 plays an important role in controlling lipid and cholesterol homeostasis and is a potential target for the treatment of metabolic and neoplastic diseases. Although the prospect of modulating LRH-1 via small molecules is exciting, the molecular mechanism linking PL structure to transcriptional co-regulator preference is unknown. Previous studies showed that binding to an activating PL ligand, such as dilauroylphosphatidylcholine, favors LRH-1's interaction with transcriptional co-activators to up-regulate gene expression. Both crystallographic and solution-based structural studies showed that dilauroylphosphatidylcholine binding drives unanticipated structural fluctuations outside of the canonical activation surface in an alternate activation function (AF) region, encompassing the ß-sheet-H6 region of the protein. However, the mechanism by which dynamics in the alternate AF influences co-regulator selectivity remains elusive. Here, we pair x-ray crystallography with molecular modeling to identify an unexpected allosteric network that traverses the protein ligand binding pocket and links these two elements to dictate selectivity. We show that communication between the alternate AF region and classical AF2 is correlated with the strength of the co-regulator interaction. This work offers the first glimpse into the conformational dynamics that drive this unusual PL-mediated nuclear hormone receptor activation.


Assuntos
Modelos Moleculares , Coativador 2 de Receptor Nuclear/metabolismo , Fosfolipídeos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/química , 4-Cloro-7-nitrobenzofurazano/metabolismo , Regulação Alostérica , Apoproteínas , Sítios de Ligação , Bases de Dados de Proteínas , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Genes Reporter , Células HEK293 , Humanos , Ligantes , Simulação de Dinâmica Molecular , Mutação , Coativador 2 de Receptor Nuclear/química , Coativador 2 de Receptor Nuclear/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfolipídeos/química , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ativação Transcricional
4.
Bioorg Med Chem Lett ; 26(14): 3232-3236, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27262595

RESUMO

Tyrosyl-DNA phosphodiesterase 2 (TDP2) processes protein/DNA adducts resulting from abortive DNA topoisomerase II (Top2) activity. TDP2 inhibition could provide synergism with the Top2 poison class of chemotherapeutics. By virtual screening of the NCI diversity small molecule database, we identified selective TDP2 inhibitors and experimentally verified their selective inhibitory activity. Three inhibitors exhibited low-micromolar IC50 values. Molecular dynamics simulations revealed a common binding mode for these inhibitors, involving association to the TDP2 DNA-binding cleft. MM-PBSA per-residue energy decomposition identified important interactions of the compounds with specific TDP2 residues. These interactions could provide new avenues for synthetic optimization of these scaffolds.


Assuntos
Descoberta de Drogas , Proteínas Nucleares/antagonistas & inibidores , Inibidores de Fosfodiesterase/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/antagonistas & inibidores , Animais , Proteínas de Ligação a DNA , Relação Dose-Resposta a Droga , Humanos , Camundongos , Simulação de Dinâmica Molecular , Estrutura Molecular , Proteínas Nucleares/metabolismo , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/química , Diester Fosfórico Hidrolases/metabolismo , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Peixe-Zebra
5.
J Phys Chem B ; 120(33): 8379-88, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27109703

RESUMO

Replicative DNA polymerases (Pols) frequently possess two distinct DNA processing activities: DNA synthesis (polymerization) and proofreading (3'-5' exonuclease activity). The polymerase and exonuclease reactions are performed alternately and are spatially separated in different protein domains. Thus, the growing DNA primer terminus has to undergo dynamic conformational switching between two distinct functional sites on the polymerase. Furthermore, the transition from polymerization (pol) mode to exonuclease (exo) mode must occur in the context of a DNA Pol holoenzyme, wherein the polymerase is physically associated with processivity factor proliferating cell nuclear antigen (PCNA) and primer-template DNA. The mechanism of this conformational switching and the role that PCNA plays in it have remained obscure, largely due to the dynamic nature of ternary Pol/PCNA/DNA assemblies. Here, we present computational models of ternary assemblies for archaeal polymerase PolB. We have combined all available structural information for the binary complexes with electron microscopy data and have refined atomistic models for ternary PolB/PCNA/DNA assemblies in pol and exo modes using molecular dynamics simulations. In addition to the canonical PIP-box/interdomain connector loop (IDCL) interface of PolB with PCNA, contact analysis of the simulation trajectories revealed new secondary binding interfaces, distinct between the pol and exo states. Using targeted molecular dynamics, we explored the conformational transition from pol to exo mode. We identified a hinge region between the thumb and palm domains of PolB that is critical for conformational switching. With the thumb domain anchored onto the PCNA surface, the neighboring palm domain executed rotational motion around the hinge, bringing the core of PolB down toward PCNA to form a new interface with the clamp. A helix from PolB containing a patch of arginine residues was involved in the binding, locking the complex in the exo mode conformation. Together, these results provide a structural view of how the transition between the pol and exo states of PolB is coordinated through PCNA to achieve efficient proofreading.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , DNA/química , DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , Holoenzimas/química , Holoenzimas/metabolismo , Microscopia Eletrônica , Simulação de Dinâmica Molecular , Antígeno Nuclear de Célula em Proliferação/química , Conformação Proteica , Domínios Proteicos , Pyrococcus abyssi , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA