Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 11(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34544136

RESUMO

Environmental temperature can affect chromatin-based gene regulation, in particular in ectotherms such as insects. Genes regulated by the Polycomb group (PcG) vary in their transcriptional output in response to changes in temperature. Expression of PcG-regulated genes typically increases with decreasing temperatures. Here, we examined variations in temperature-sensitive expression of PcG target genes in natural populations from different climates of Drosophila melanogaster, and differences thereof across different fly stages and tissues. Temperature-induced expression plasticity was found to be stage- and sex-specific with differences in the specificity between the examined PcG target genes. Some tissues and stages, however, showed a higher number of PcG target genes with temperature-sensitive expression than others. Overall, we found higher levels of temperature-induced expression plasticity in African tropical flies from the ancestral species range than in flies from temperate Europe. We also observed differences between temperate flies, however, with more reduction of expression plasticity in warm-temperate than in cold-temperate populations. Although in general, temperature-sensitive expression appeared to be detrimental in temperate climates, there were also cases in which plasticity was increased in temperate flies, as well as no changes in expression plasticity between flies from different climates.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Clima , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica , Masculino , Proteínas do Grupo Polycomb , Temperatura
2.
PLoS One ; 16(12): e0261465, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34919594

RESUMO

Mitochondria are sites of cellular respiration, which is accompanied by the generation of dangerous reactive oxygen species (ROS). Cells have multiple mechanisms to mitigate the dangers of ROS. Here we investigate the involvement of the COX complex assembly chaperone COX11 (cytochrome c oxidase 11) in cellular redox homeostasis, using homologs from the flowering plant Arabidopsis thaliana (AtCOX11) and yeast Saccharomyces cerevisiae (ScCOX11). We found that AtCOX11 is upregulated in Arabidopsis seedlings in response to various oxidative stresses, suggesting a defensive role. In line with this, the overexpression of either AtCOX11 or ScCOX11 reduced ROS levels in yeast cells exposed to the oxidative stressor paraquat. Under normal growth conditions, both Arabidopsis and yeast COX11 overexpressing cells had the same ROS levels as the corresponding WT. In contrast, the COX11 knock-down and knock-out in Arabidopsis and yeast, respectively, significantly reduced ROS levels. In yeast cells, the ScCOX11 appears to be functionally redundant with superoxide dismutase 1 (ScSOD1), a superoxide detoxifying enzyme. The ΔSccox11ΔScsod1 mutants had dramatically reduced growth on paraquat, compared with the WT or single mutants. This growth retardation does not seem to be linked to the status of the COX complex and cellular respiration. Overexpression of putatively soluble COX11 variants substantially improved the resistance of yeast cells to the ROS inducer menadione. This shows that COX11 proteins can provide antioxidative protection likely independently from their COX assembly function. The conserved Cys219 (in AtCOX11) and Cys208 (in ScCOX11) are important for this function. Altogether, these results suggest that COX11 homologs, in addition to participating in COX complex assembly, have a distinct and evolutionary conserved role in protecting cells during heightened oxidative stress.


Assuntos
Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cobre/metabolismo , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Chaperonas Moleculares/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Superóxido Dismutase/metabolismo
3.
Redox Biol ; 21: 101079, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30593977

RESUMO

Members of the evolutionary conserved Sco protein family have been intensively studied regarding their role in the assembly of the mitochondrial cytochrome c oxidase. However, experimental and structural data, specifically the presence of a thioredoxin-like fold, suggest that Sco proteins may also play a role in redox homeostasis. In our study, we addressed this putative function of Sco proteins using Saccharomyces cerevisiae as a model system. Like many eukaryotes, this yeast possesses two SCO homologs (SCO1 and SCO2). Mutants bearing a deletion of either of the two genes are not affected in their growth under oxidative stress. However, the concomitant deletion of the SOD1 gene encoding the superoxide dismutase 1 resulted in a distinct phenotype: double deletion strains lacking SCO1 or SCO2 and SOD1 are highly sensitive to oxidative stress and show dramatically increased ROS levels. The respiratory competent double deletion strain Δsco2Δsod1 paved the way to investigate the putative antioxidant function of SCO homologs apart from their role in respiration by complementation analysis. Sco homologs from Drosophila, Arabidopsis, human and two other yeast species were integrated into the genome of the double deletion mutant and the transformants were analyzed for their growth under oxidative stress. Interestingly, all homologs except for Kluyveromyces lactis K07152 and Arabidopsis thaliana HCC1 were able to complement the phenotype, indicating their role in oxidative stress defense. We further applied this complementation-based system to investigate whether pathogenic point mutations affect the putative antioxidant role of hSco2. Surprisingly, all of the mutant alleles failed to restore the ROS-sensitivity of the Δsco2Δsod1 strain. In conclusion, our data not only provide clear evidence for the function of Sco proteins in oxidative stress defense but also offer a valuable tool to investigate this role for other homologous proteins.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , Adaptação Biológica , Antioxidantes/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Mitocôndrias/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Relação Estrutura-Atividade , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA