Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(39): 17172-17176, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32608102

RESUMO

Transition-metal phosphides (TMP) prepared by atomic layer deposition (ALD) are reported for the first time. Ultrathin Co-P films were deposited by using PH3 plasma as the phosphorus source and an extra H2 plasma step to remove excess P in the growing films. The optimized ALD process proceeded by self-limited layer-by-layer growth, and the deposited Co-P films were highly pure and smooth. The Co-P films deposited via ALD exhibited better electrochemical and photoelectrochemical hydrogen evolution reaction (HER) activities than similar Co-P films prepared by the traditional post-phosphorization method. Moreover, the deposition of ultrathin Co-P films on periodic trenches was demonstrated, which highlights the broad and promising potential application of this ALD process for a conformal coating of TMP films on complex three-dimensional (3D) architectures.

2.
Adv Mater ; 35(3): e2207246, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271718

RESUMO

The perovskite SrRuO3 (SRO) is a strongly correlated oxide whose physical and structural properties are strongly intertwined. Notably, SRO is an itinerant ferromagnet that exhibits a large anomalous Hall effect (AHE) whose sign can be readily modified. Here, a hydrogen spillover method is used to tailor the properties of SRO thin films via hydrogen incorporation. It is found that the magnetization and Curie temperature of the films are strongly reduced and, at the same time, the structure evolves from an orthorhombic to a tetragonal phase as the hydrogen content is increased up to ≈0.9 H per SRO formula unit. The structural phase transition is shown, via in situ crystal truncation rod measurements, to be related to tilting of the RuO6 octahedral units. The significant changes observed in magnetization are shown, via density functional theory (DFT), to be a consequence of shifts in the Fermi level. The reported findings provide new insights into the physical properties of SRO via tailoring its lattice symmetry and emergent physical phenomena via the hydrogen spillover technique.

3.
Adv Mater ; 35(23): e2209616, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36996804

RESUMO

Antiferromagnets with non-collinear spin structures display various properties that make them attractive for spintronic devices. Some of the most interesting examples are an anomalous Hall effect despite negligible magnetization and a spin Hall effect with unusual spin polarization directions. However, these effects can only be observed when the sample is set predominantly into a single antiferromagnetic domain state. This can only be achieved when the compensated spin structure is perturbed and displays weak moments due to spin canting that allows for external domain control. In thin films of cubic non-collinear antiferromagnets, this imbalance is previously assumed to require tetragonal distortions induced by substrate strain. Here, it is shown that in Mn3 SnN and Mn3 GaN, spin canting is due to structural symmetry lowering induced by large displacements of the magnetic manganese atoms away from high-symmetry positions. These displacements remain hidden in X-ray diffraction when only probing the lattice metric and require measurement of a large set of scattering vectors to resolve the local atomic positions. In Mn3 SnN, the induced net moments enable the observation of the anomalous Hall effect with an unusual temperature dependence, which is conjectured to result from a bulk-like temperature-dependent coherent spin rotation within the kagome plane.

4.
Adv Mater ; 34(23): e2109406, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35365874

RESUMO

The generation of spin currents from charge currents via the spin Hall effect (SHE) is of fundamental and technological interest. Here, some of the largest SHEs yet observed via extrinsic scattering are found in a large class of binary compounds formed from a 5d element and aluminum, with a giant spin Hall angle (SHA) of ≈1 in the compound Os22 Al78 . A critical composition of the 5d element is found at which there is a structural phase boundary between poorly and highly textured crystalline material, where the SHA exhibits its largest value. Furthermore, a systematic increase is found in the spin Hall conductivity (SHC) and SHA at this critical composition as the atomic number of the 5d element is systematically increased. This clearly shows that the SHE and SHC are derived from extrinsic scattering mechanisms related to the potential mismatch between the 5d element and Al. These studies show the importance of extrinsic mechanisms derived from potential mismatch as a route to obtaining large spin Hall angles with high technological impact. Indeed, it is demonstrated that a state-of-the-art racetrack device has a several-fold increased current-induced domain wall efficiency using these materials as compared to prior-art materials.

5.
Nat Nanotechnol ; 17(11): 1183-1191, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36203092

RESUMO

Of great promise are synthetic antiferromagnet-based racetrack devices in which chiral composite domain walls can be efficiently moved by current. However, overcoming the trade-off between energy efficiency and thermal stability remains a major challenge. Here we show that chiral domain walls in a synthetic antiferromagnet-ferromagnet lateral junction are highly stable against large magnetic fields, while the domain walls can be efficiently moved across the junction by current. Our approach takes advantage of field-induced global energy barriers in the unique energy landscape of the junction that are added to the local energy barrier. We demonstrate that thermal fluctuations are equivalent to the magnetic field effect, thereby, surprisingly, increasing the energy barrier and further stabilizing the domain wall in the junction at higher temperatures, which is in sharp contrast to ferromagnets or synthetic antiferromagnets. We find that the threshold current density can be further decreased by tilting the junction without affecting the high domain wall stability. Furthermore, we demonstrate that chiral domain walls can be robustly confined within a ferromagnet region sandwiched on both sides by synthetic antiferromagnets and yet can be readily injected into the synthetic antiferromagnet regions by current. Our findings break the aforementioned trade-off, thereby allowing for versatile domain-wall-based memory, and logic, and beyond.

6.
Adv Mater ; 34(11): e2108637, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35048455

RESUMO

There is considerable interest in van der Waals (vdW) materials as potential hosts for chiral skyrmionic spin textures. Of particular interest is the ferromagnetic, metallic compound Fe3 GeTe2 (FGT), which has a comparatively high Curie temperature (150-220 K). Several recent studies have reported the observation of chiral Néel skyrmions in this compound, which is inconsistent with its presumed centrosymmetric structure. Here the observation of Néel type skyrmions in single crystals of FGT via Lorentz transmission electron microscopy (LTEM) is reported. It is shown from detailed X-ray diffraction structure analysis that FGT lacks an inversion symmetry as a result of an asymmetric distribution of Fe vacancies. This vacancy-induced breaking of the inversion symmetry of this compound is a surprising and novel observation and is a prerequisite for a Dzyaloshinskii-Moriya vector exchange interaction which accounts for the chiral Néel skyrmion phase. This phenomenon is likely to be common to many 2D vdW materials and suggests a path to the preparation of many such acentric compounds. Furthermore, it is found that the skyrmion size in FGT is strongly dependent on its thickness: the skyrmion size increases from ≈100 to ≈750 nm as the thickness of the lamella is increased from ≈90 nm to ≈2 µm. This extreme size tunability is a feature common to many low symmetry ferro- and ferri-magnetic compounds.

7.
ACS Nano ; 14(4): 4405-4413, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32053338

RESUMO

Weyl semimetals (WSMs) exhibit an electronic structure governed by linear band dispersions and degenerate (Weyl) points that lead to exotic physical phenomena. While WSMs were established in bulk monopnictide compounds several years ago, the growth of thin films remains a challenge. Here, we report the bottom-up synthesis of single-crystalline NbP and TaP thin films, 9 to 70 nm thick, by means of molecular beam epitaxy. The as-grown epitaxial films feature a phosphorus-rich stoichiometry, a tensile-strained unit cell, and a homogeneous surface termination, unlike their bulk crystal counterparts. These properties result in an electronic structure governed by topological surface states as directly observed using in situ momentum photoemission microscopy, along with a Fermi-level shift of -0.2 eV with respect to the intrinsic chemical potential. Although the Fermi energy of the as-grown samples is still far from the Weyl points, carrier mobilities close to 103 cm2/(V s) have been measured at room temperature in patterned Hall-bar devices. The ability to grow thin films of Weyl semimetals that can be tailored by doping or strain, is an important step toward the fabrication of functional WSM-based devices and heterostructures.

8.
Adv Mater ; 31(3): e1804428, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30387192

RESUMO

2D SnTe films with a thickness of as little as 2 atomic layers (ALs) have recently been shown to be ferroelectric with in-plane polarization. Remarkably, they exhibit transition temperatures (Tc ) much higher than that of bulk SnTe. Here, combining molecular beam epitaxy, variable temperature scanning tunneling microscopy, and ab initio calculations, the underlying mechanism of the Tc enhancement is unveiled, which relies on the formation of γ-SnTe, a van der Waals orthorhombic phase with antipolar inter-layer coupling in few-AL thick SnTe films. In this phase, 4n - 2 AL (n = 1, 2, 3…) thick films are found to possess finite in-plane polarization (space group Pmn21 ), while 4n AL thick films have zero total polarization (space group Pnma). Above 8 AL, the γ-SnTe phase becomes metastable, and can convert irreversibly to the bulk rock salt phase as the temperature is increased. This finding unambiguously bridges experiments on ultrathin SnTe films with predictions of robust ferroelectricity in GeS-type monochalcogenide monolayers. The observed high transition temperature, together with the strong spin-orbit coupling and van der Waals structure, underlines the potential of atomically thin γ-SnTe films for the development of novel spontaneous polarization-based devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA