Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Antimicrob Agents Chemother ; 60(4): 2195-208, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26810656

RESUMO

The human immunodeficiency virus type 1 (HIV-1) capsid plays crucial roles in HIV-1 replication and thus represents an excellent drug target. We developed a high-throughput screening method based on a time-resolved fluorescence resonance energy transfer (HTS-TR-FRET) assay, using the C-terminal domain (CTD) of HIV-1 capsid to identify inhibitors of capsid dimerization. This assay was used to screen a library of pharmacologically active compounds, composed of 1,280in vivo-active drugs, and identified ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one], an organoselenium compound, as an inhibitor of HIV-1 capsid CTD dimerization. Nuclear magnetic resonance (NMR) spectroscopic analysis confirmed the direct interaction of ebselen with the HIV-1 capsid CTD and dimer dissociation when ebselen is in 2-fold molar excess. Electrospray ionization mass spectrometry revealed that ebselen covalently binds the HIV-1 capsid CTD, likely via a selenylsulfide linkage with Cys198 and Cys218. This compound presents anti-HIV activity in single and multiple rounds of infection in permissive cell lines as well as in primary peripheral blood mononuclear cells. Ebselen inhibits early viral postentry events of the HIV-1 life cycle by impairing the incoming capsid uncoating process. This compound also blocks infection of other retroviruses, such as Moloney murine leukemia virus and simian immunodeficiency virus, but displays no inhibitory activity against hepatitis C and influenza viruses. This study reports the use of TR-FRET screening to successfully identify a novel capsid inhibitor, ebselen, validating HIV-1 capsid as a promising target for drug development.


Assuntos
Fármacos Anti-HIV/farmacologia , Azóis/farmacologia , Proteínas do Capsídeo/antagonistas & inibidores , Capsídeo/efeitos dos fármacos , HIV-1/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Fármacos Anti-HIV/química , Azóis/química , Sítios de Ligação , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Bases de Dados de Produtos Farmacêuticos , Transferência Ressonante de Energia de Fluorescência , HIV-1/fisiologia , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Isoindóis , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/virologia , Vírus da Leucemia Murina de Moloney/efeitos dos fármacos , Vírus da Leucemia Murina de Moloney/fisiologia , Compostos Organosselênicos/química , Ligação Proteica , Domínios Proteicos , Multimerização Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/fisiologia , Bibliotecas de Moléculas Pequenas/química , Montagem de Vírus/efeitos dos fármacos , Montagem de Vírus/fisiologia , Replicação Viral/efeitos dos fármacos
2.
J Biol Chem ; 288(40): 29105-14, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23960073

RESUMO

The p21-activated kinases (PAKs) are immediate downstream effectors of the Rac/Cdc42 small G-proteins and implicated in promoting tumorigenesis in various types of cancer including breast and lung carcinomas. Recent studies have established a requirement for the PAKs in the pathogenesis of Neurofibromatosis type 2 (NF2), a dominantly inherited cancer disorder caused by mutations at the NF2 gene locus. Merlin, the protein product of the NF2 gene, has been shown to negatively regulate signaling through the PAKs and the tumor suppressive functions of Merlin are mediated, at least in part, through inhibition of the PAKs. Knockdown of PAK1 and PAK2 expression, through RNAi-based approaches, impairs the proliferation of NF2-null schwannoma cells in culture and inhibits their ability to form tumors in vivo. These data implicate the PAKs as potential therapeutic targets. High-throughput screening of a library of small molecules combined with a structure-activity relationship approach resulted in the identification of FRAX597, a small-molecule pyridopyrimidinone, as a potent inhibitor of the group I PAKs. Crystallographic characterization of the FRAX597/PAK1 complex identifies a phenyl ring that traverses the gatekeeper residue and positions the thiazole in the back cavity of the ATP binding site, a site rarely targeted by kinase inhibitors. FRAX597 inhibits the proliferation of NF2-deficient schwannoma cells in culture and displayed potent anti-tumor activity in vivo, impairing schwannoma development in an orthotopic model of NF2. These studies identify a novel class of orally available ATP-competitive Group I PAK inhibitors with significant potential for the treatment of NF2 and other cancers.


Assuntos
Carcinogênese/patologia , Neurilemoma/tratamento farmacológico , Neurilemoma/enzimologia , Neurofibromatose 2/tratamento farmacológico , Piridonas/uso terapêutico , Pirimidinas/uso terapêutico , Pirimidinonas/uso terapêutico , Bibliotecas de Moléculas Pequenas/uso terapêutico , Quinases Ativadas por p21/antagonistas & inibidores , Animais , Carcinogênese/efeitos dos fármacos , Domínio Catalítico , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Humanos , Camundongos , Modelos Moleculares , Neurilemoma/patologia , Neurofibromatose 2/enzimologia , Neurofibromatose 2/patologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridonas/química , Piridonas/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinonas/química , Pirimidinonas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Quinases Ativadas por p21/metabolismo
3.
Bioorg Med Chem Lett ; 21(8): 2198-202, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21440437

RESUMO

New indoline alkaloid-type compounds which inhibit HCV production by infected hepatoma cells have been identified. These compounds, dimeric-type compounds of previously known inhibitors, display double digit nanomolar IC(50) and EC(50) values, with cytotoxicity CC(50) indexes higher than 36 µM, thus providing ample therapeutic windows for further development of HCV drugs.


Assuntos
Antivirais/química , Hepacivirus/efeitos dos fármacos , Proteínas do Core Viral/antagonistas & inibidores , Alcaloides/síntese química , Alcaloides/química , Alcaloides/toxicidade , Antivirais/síntese química , Antivirais/toxicidade , Linhagem Celular Tumoral , Dimerização , Hepacivirus/metabolismo , Humanos , Indóis/química , Proteínas do Core Viral/metabolismo
4.
Bioorg Med Chem Lett ; 19(24): 6926-30, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19896376

RESUMO

New small molecule inhibitors of HCV were discovered by screening a small library of indoline alkaloid-type compounds. An automated assay format was employed which allowed identification of dimerization inhibitors of core, the capsid protein of the virus. These compounds were subsequently shown to block production of infectious virus in hepatoma cells.


Assuntos
Antivirais/química , Hepacivirus/efeitos dos fármacos , Alcaloides Indólicos/química , Antivirais/farmacologia , Linhagem Celular Tumoral , Humanos , Alcaloides Indólicos/farmacologia
5.
Oncogene ; 37(32): 4372-4384, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29743592

RESUMO

The RAS proteins are the most frequently mutated oncogenes in cancer, with highest frequency found in pancreatic, lung, and colon tumors. Moreover, the activity of RAS is required for the proliferation and/or survival of these tumor cells and thus represents a high-value target for therapeutic development. Direct targeting of RAS has proven challenging for multiple reasons stemming from the biology of the protein, the complexity of downstream effector pathways and upstream regulatory networks. Thus, significant efforts have been directed at identifying downstream targets on which RAS is dependent. These efforts have proven challenging, in part due to confounding factors such as reliance on two-dimensional adherent monolayer cell cultures that inadequately recapitulate the physiologic context to which cells are exposed in vivo. To overcome these issues, we implemented a high-throughput screening (HTS) approach using a spheroid-based 3-dimensional culture format, thought to more closely reflect conditions experienced by cells in vivo. Using isogenic cell pairs, differing in the status of KRAS, we identified Proscillaridin A as a selective inhibitor of cells harboring the oncogenic KRasG12V allele. Significantly, the identification of Proscillaridin A was facilitated by the 3D screening platform and would not have been discovered employing standard 2D culturing methods.


Assuntos
Mutação/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Antineoplásicos/farmacologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Fenótipo , Proscilaridina/farmacologia , Transdução de Sinais/genética
6.
Protein Sci ; 16(9): 1905-13, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17660250

RESUMO

The tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix metalloproteinases (MMPs). Since unregulated MMP activities are linked to arthritis, cancer, and atherosclerosis, TIMP variants that are selective inhibitors of disease-related MMPs have potential therapeutic value. The structures of TIMP/MMP complexes reveal that most interactions with the MMP involve the N-terminal pentapeptide of TIMP and the C-D beta-strand connector which occupy the primed and unprimed regions of the active site. The loop between beta-strands A and B forms a secondary interaction site for some MMPs, ranging from multiple contacts in the TIMP-2/membrane type-1 (MT1)-MMP complex to none in the TIMP-1/MMP-1 complex. TIMP-1 and its inhibitory domain, N-TIMP-1, are weak inhibitors of MT1-MMP; inhibition is not improved by grafting the longer AB loop from TIMP-2 into N-TIMP-1, but this change impairs binding to MMP-3 and MMP-7. Mutational studies with N-TIMP-1 suggest that its weak inhibition of MT1-MMP, as compared to other N-TIMPs, arises from multiple (>3) sequence differences in the interaction site. Substitutions for Thr2 of N-TIMP-1 strongly influence MMP selectivity; Arg and Gly, that generally reduce MMP affinity, have less effect on binding to MMP-9. When the Arg mutation is added to the N-TIMP-1(AB2) mutant, it produces a gelatinase-specific inhibitor with Ki values of 2.8 and 0.4 nM for MMP-2 and -9, respectively. Interestingly, the Gly mutant has a Ki of 2.1 nM for MMP-9 and >40 muM for MMP-2, indicating that engineered TIMPs can discriminate between MMPs in the same subfamily.


Assuntos
Inibidores de Metaloproteinases de Matriz , Inibidor Tecidual de Metaloproteinase-1/antagonistas & inibidores , Inibidor Tecidual de Metaloproteinase-1/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Arginina/metabolismo , Sítios de Ligação , Domínio Catalítico , Glicina/metabolismo , Humanos , Cinética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Engenharia de Proteínas , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/isolamento & purificação , Inibidor Tecidual de Metaloproteinase-1/metabolismo
7.
Oncotarget ; 7(34): 54515-54525, 2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27363027

RESUMO

Neurofibromatosis type 2 (NF2) is a dominantly inherited autosomal disease characterized by schwannomas of the 8th cranial nerve. The NF2 tumor suppressor gene encodes for Merlin, a protein implicated as a suppressor of multiple cellular signaling pathways. To identify potential drug targets in NF2-associated malignancies we assessed the consequences of inhibiting the tyrosine kinase receptor MET. We identified crizotinib, a MET and ALK inhibitor, as a potent inhibitor of NF2-null Schwann cell proliferation in vitro and tumor growth in vivo. To identify the target/s of crizotnib we employed activity-based protein profiling (ABPP), leading to identification of FAK1 (PTK2) as the relevant target of crizotinib inhibition in NF2-null schwannoma cells. Subsequent studies confirm that inhibition of FAK1 is sufficient to suppress tumorigenesis in animal models of NF2 and that crizotinib-resistant forms of FAK1 can rescue the effects of treatment. These studies identify a FDA approved drug as a potential treatment for NF2 and delineate the mechanism of action in NF2-null Schwann cells.


Assuntos
Quinase 1 de Adesão Focal/antagonistas & inibidores , Neurilemoma/tratamento farmacológico , Neurofibromina 2/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Crizotinibe , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cancer Res ; 76(12): 3507-19, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27216189

RESUMO

The Hippo-YAP pathway has emerged as a major driver of tumorigenesis in many human cancers. YAP is a transcriptional coactivator and while details of YAP regulation are quickly emerging, it remains unknown what downstream targets are critical for the oncogenic functions of YAP. To determine the mechanisms involved and to identify disease-relevant targets, we examined the role of YAP in neurofibromatosis type 2 (NF2) using cell and animal models. We found that YAP function is required for NF2-null Schwann cell survival, proliferation, and tumor growth in vivo Moreover, YAP promotes transcription of several targets including PTGS2, which codes for COX-2, a key enzyme in prostaglandin biosynthesis, and AREG, which codes for the EGFR ligand, amphiregulin. Both AREG and prostaglandin E2 converge to activate signaling through EGFR. Importantly, treatment with the COX-2 inhibitor celecoxib significantly inhibited the growth of NF2-null Schwann cells and tumor growth in a mouse model of NF2. Cancer Res; 76(12); 3507-19. ©2016 AACR.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Ciclo-Oxigenase 2/fisiologia , Receptores ErbB/fisiologia , Neurofibromatose 2/etiologia , Fosfoproteínas/fisiologia , Transdução de Sinais/fisiologia , Anfirregulina/fisiologia , Carcinogênese , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Humanos , Células de Schwann/fisiologia , Fatores de Transcrição , Proteínas de Sinalização YAP
9.
Artigo em Inglês | MEDLINE | ID: mdl-15193265

RESUMO

The lipocalins are a highly divergent, ubiquitous family of proteins that commonly function in binding lipophilic molecules. Although a specific tear lipocalin is a major component of lacrimal fluid and tears in many mammals, there has been no definitive identification of such a protein in rabbit tears. The goals of this project were to identify the major proteins in rabbit (Oryctolagus cuniculus) lacrimal fluid, so as to determine if they include a lipocalin and, if such a protein is present, to determine its source. Lacrimal fluid was collected from NZW sexually mature female rabbits, and culture medium from rabbit lacrimal gland epithelial (acinar) and interstitial cells was isolated. Proteins from these fluids were separated by SDS-PAGE electrophoresis and analyzed by sequencing the intact proteins and sequencing or mass analysis of fragments derived by trypsin digestion. Proteins of approximately 85 and 67 kDa were identified as rabbit transferrin and serum albumin, respectively, while components of 17 and 7 kDa had N-terminal sequences identical to those of lipophilin CL and AL, respectively. BLAST searches of the nr database with the N-terminal sequence of a protein of 18 kDa did not identify any homologues. However, when used to scan the PROSITE database, it was found to contain a lipocalin signature sequence. It is closely related to two lipocalins previously isolated from rabbit saliva and nasal mucus. Further studies with the N-terminal and internal sequences confirmed that the lacrimal protein is a lipocalin that is truncated at the N-terminus as compared with other tear lipocalins and is more similar to odorant binding proteins from rodents.


Assuntos
Proteínas de Transporte/metabolismo , Lágrimas/química , Sequência de Aminoácidos , Animais , Eletroforese em Gel de Poliacrilamida , Feminino , Immunoblotting , Aparelho Lacrimal/metabolismo , Lipocalina 1 , Dados de Sequência Molecular , Proteínas da Mielina/análise , Proteínas da Mielina/metabolismo , Proteolipídeos/análise , Proteolipídeos/metabolismo , Coelhos , Secretoglobinas , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Uteroglobina
10.
Cancer Res ; 73(19): 5974-84, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23943799

RESUMO

The Notch pathway has been implicated in a number of malignancies with different roles that are cell- and tissue-type dependent. Notch1 is a putative oncogene in non-small cell lung cancer (NSCLC) and activation of the pathway represents a negative prognostic factor. To establish the role of Notch1 in lung adenocarcinoma, we directly assessed its requirement in Kras-induced tumorigenesis in vivo using an autochthonous model of lung adenocarcinoma with concomitant expression of oncogenic Kras and deletion of Notch1. We found that Notch1 function is required for tumor initiation via suppression of p53-mediated apoptosis through the regulation of p53 stability. These findings implicate Notch1 as a critical effector in Kras-driven lung adenocarcinoma and as a regulator of p53 at a posttranslational level. Moreover, our study provides new insights to explain, at a molecular level, the correlation between Notch1 activity and poor prognosis in patients with NSCLC carrying wild-type p53. This information is critical for design and implementation of new therapeutic strategies in this cohort of patients representing 50% of NSCLC cases.


Assuntos
Adenocarcinoma/patologia , Apoptose , Transformação Celular Neoplásica , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Receptor Notch1/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular , Proliferação de Células , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Knockout , Mutação/genética , Transdução de Sinais , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/química
11.
PLoS One ; 7(2): e32207, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22389688

RESUMO

Over 130 million people are infected chronically with hepatitis C virus (HCV), which, together with HBV, is the leading cause of liver disease. Novel small molecule inhibitors of Hepatitis C virus (HCV) are needed to complement or replace current treatments based on pegylated interferon and ribavirin, which are only partially successful and plagued with side-effects. Assembly of the virion is initiated by the oligomerization of core, the capsid protein, followed by the interaction with NS5A and other HCV proteins. By screening for inhibitors of core dimerization, we previously discovered peptides and drug-like compounds that disrupt interactions between core and other HCV proteins, NS3 and NS5A, and block HCV production. Here we report that a biotinylated derivative of SL209, a prototype small molecule inhibitor of core dimerization (IC(50) of 2.80 µM) that inhibits HCV production with an EC(50) of 3.20 µM, is capable of penetrating HCV-infected cells and tracking with core. Interaction between the inhibitors, core and other viral proteins was demonstrated by SL209-mediated affinity-isolation of HCV proteins from lysates of infected cells, or of the corresponding recombinant HCV proteins. SL209-like inhibitors of HCV core may form the basis of novel treatments of Hepatitis C in combination with other target-specific HCV drugs such as inhibitors of the NS3 protease, the NS5B polymerase, or the NS5A regulatory protein. More generally, our work supports the hypothesis that inhibitors of viral capsid formation might constitute a new class of potent antiviral agents, as was recently also shown for HIV capsid inhibitors.


Assuntos
Antivirais/química , Antivirais/farmacologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Hepacivirus/efeitos dos fármacos , Hepacivirus/metabolismo , Proteínas do Capsídeo/genética , Linhagem Celular Tumoral , Humanos , Immunoblotting , Microscopia de Fluorescência , Multimerização Proteica , Reação em Cadeia da Polimerase em Tempo Real
12.
Artigo em Inglês | MEDLINE | ID: mdl-22649407

RESUMO

The role of brown adipose tissue (BAT) in human metabolism and its potential as an anti-obesity target organ have recently received much renewed attention. Following radiological detection of substantial amounts of BAT in adults by several independent research groups, an increasing number of studies are now dedicated to uncover BAT's genetic, developmental, and environmental determinants. In contrast to murine BAT, human BAT is not present as a single major fat depot in a well-defined location. The distribution of BAT in several areas in the body significantly limits its availability to research. A human brown adipocyte cell line is therefore critical in broadening the options available to researchers in the field. The human BAT-cell line PAZ6 was created to address such a need and has been well characterized by several research groups around the world. In the present review, we discuss their findings and propose potential applications of the PAZ6 cells in addressing the relevant questions in the BAT field, namely for future use in therapeutic applications.

13.
Viruses ; 2(8): 1734-1751, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21994704

RESUMO

Hepatitis C virus (HCV) infects over 130 million people worldwide and is a major cause of liver disease. No vaccine is available. Novel specific drugs for HCV are urgently required, since the standard-of-care treatment of pegylated interferon combined with ribavirin is poorly tolerated and cures less than half of the treated patients. Promising, effective direct-acting drugs currently in the clinic have been described for three of the ten potential HCV target proteins: NS3/NS4A protease, NS5B polymerase and NS5A, a regulatory phosphoprotein. We here present core, the viral capsid protein, as another attractive, non-enzymatic target, against which a new class of anti-HCV drugs can be raised. Core plays a major role in the virion's formation, and interacts with several cellular proteins, some of which are involved in host defense mechanisms against the virus. This most conserved of all HCV proteins requires oligomerization to function as the organizer of viral particle assembly. Using core dimerization as the basis of transfer-of-energy screening assays, peptides and small molecules were identified which not only inhibit core-core interaction, but also block viral production in cell culture. Initial chemical optimization resulted in compounds active in single digit micromolar concentrations. Core inhibitors could be used in combination with other HCV drugs in order to provide novel treatments of Hepatitis C.

14.
Assay Drug Dev Technol ; 8(1): 96-105, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20035614

RESUMO

Binding of hepatitis C virus (HCV) RNA to core, the capsid protein, results in the formation of the nucleocapsid, the first step in the assembly of the viral particle. A novel assay was developed to discover small molecule inhibitors of core dimerization. This assay is based on time-resolved fluorescence resonance energy transfer (TR-FRET) between anti-tag antibodies labeled with either europium cryptate (Eu) or allophycocyanin (XL-665). The N-terminal 106-residue portion of core protein (core106) was tagged with either glutathione-S-transferase (GST) or a Flag peptide. Tag-free core106 was selected as the reference inhibitor. The assay was used to screen the library of pharmacologically active compounds (LOPAC) consisting of 1,280 compounds and a 2,240-compound library from the Center for Chemical Methodology and Library Development at Boston University (CMLD-BU). Ten of the 28 hits from the primary TR-FRET run were confirmed in a secondary amplified luminescent proximity homogeneous assay (ALPHA screen). One hit was further characterized by dose-response analysis yielding an IC(50) of 9.3 microM. This 513 Da compound was shown to inhibit HCV production in cultured hepatoma cells.


Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Hepacivirus/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Proteínas do Core Viral/antagonistas & inibidores , Ensaio de Imunoadsorção Enzimática , Proteínas do Core Viral/química
15.
J Biol Chem ; 280(38): 32877-82, 2005 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-16079149

RESUMO

Tissue inhibitor of metalloproteinase-3 (TIMP-3) is a dual inhibitor of the matrix metalloproteinases (MMPs) and some adamalysins, two families of extracellular and cell surface metalloproteinases that function in extracellular matrix turnover and the shedding of cell surface proteins. The mechanism of inhibition of MMPs by TIMPs has been well characterized, and since the catalytic domains of MMPs and adamalysins are homologous, it was assumed that the interaction of TIMP-3 with adamalysins is closely similar. Here we report that the inhibition of the extracellular region of ADAM-17 (tumor necrosis factor alpha-converting enzyme (TACE)) by the inhibitory domain of TIMP-3 (N-TIMP-3) shows positive cooperativity. Also, mutations in the core of the MMP interaction surface of N-TIMP-3 dramatically reduce the binding affinity for MMPs but have little effect on the inhibitory activity for TACE. These results suggest that the mechanism of inhibition of ADAM-17 by TIMP-3 may be distinct from that for MMPs. The mutant proteins are also effective inhibitors of tumor necrosis factor alpha (TNF-alpha) release from phorbol ester-stimulated cells, indicating that they provide a lead for engineering TACE-specific inhibitors that may reduce side effects arising from MMP inhibition and are possibly useful for treatment of diseases associated with excessive TNF-alpha levels such as rheumatoid arthritis.


Assuntos
Proteínas ADAM/metabolismo , Inibidores de Metaloproteinases de Matriz , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Proteína ADAM17 , Sítios de Ligação , Catálise , Domínio Catalítico , Membrana Celular/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Humanos , Cinética , Metaloproteinases da Matriz/metabolismo , Modelos Moleculares , Mutação , Ésteres de Forbol/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA