Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Reprod ; 102(4): 902-914, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31967293

RESUMO

Deposition of sperm during artificial insemination in the bovine female reproductive tract results in early host innate immune reactions of polymorphonuclear neutrophils (PMNs). Furthermore, sperm-mediated neutrophil extracellular trap (NET) formation (NETosis) was recently reported to occur in different mammalian species, including humans. We, here, investigated the interactions of bovine PMN with different semen-derived samples and analyzed in more depth molecular aspects of this effector mechanism. Overall, confrontation of PMN with sperm/cell preparation (SCP) resulted in a rapid and dose-dependent NET formation leading to effective spermatozoa entrapment. Thereby, spermatozoa induced different phenotypes of NETs. Immunostaining analyses revealed the presence of histones (H3), neutrophil elastase (NE), and pentraxin (PTX) in sperm-triggered NET structures. Fresh SCP strongly induced NETosis than frozen-thawed ones. The level of NETosis was not related to spermatozoa viability. SCP as well as purified sperm cells (SCs) and supernatant (SN) induce NETosis, although the reaction in SC was lower. Enhanced levels of oxygen consumption and proton leak in PMN revealed sperm SNs but not purified SCs as PMN activators. Functional inhibition experiments revealed sperm-triggered NETosis as an NADPH oxidase- and peptidylarginine deiminase 4-dependent process and proved to be dependent on intra- and extracellular Ca++ influxes while myeloperoxidase activity and as ERK1/2- and PI3K-related signaling pathways did not seem to play a pivotal role in this effector mechanism. From these findings, we speculate that sperm-derived NETosis might also occur in vivo during artificial insemination and might therefore play a role related to reduced fertility.


Assuntos
Cálcio/metabolismo , Armadilhas Extracelulares/metabolismo , NADPH Oxidases/metabolismo , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Espermatozoides/metabolismo , Animais , Bovinos , Inseminação Artificial , Elastase de Leucócito/metabolismo , Masculino , Fenótipo , Análise do Sêmen , Transdução de Sinais/fisiologia
2.
Theriogenology ; 160: 72-80, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189996

RESUMO

During artificial insemination in bovine, the deposition of semen into the uterus results in an immune reaction which is based on polymorphonuclear neutrophils activity, including the formation of neutrophil extracellular traps. The formation of neutrophil extracellular traps as a reaction of neutrophils to spermatozoa was recently described. However, it is not completely clear which components of the semen are responsible for this reaction. The objective of this study was to quantify and compare the formation of neutrophil extracellular traps following in vitro incubation of bovine polymorphonuclear neutrophils with semen and extenders of different origins and conditions. We investigated the interactions between bovine polymorphonuclear neutrophils and different semen extenders, various seminal plasma concentrations from young and old bulls as well as sexed and non-sexed semen and their corresponding extenders. Three different semen extenders from two companies in fresh and frozen-thawed conditions were compared. Fresh semen extenders showed higher neutrophil extracellular traps induction than did frozen-thawed ones. The formation of neutrophil extracellular traps were also dependent on the presence of seminal plasma. We could show that seminal plasma alone, without any sperm cells, induced the reaction and that the addition of at least 1% seminal plasma already resulted in the formation of neutrophil extracellular traps. Furthermore, seminal plasma from young bulls led to significant higher neutrophil extracellular traps induction. No difference between non-sex-sorted and sex-sorted sperm and its extenders was observed. Taken together, different semen extenders as well as the amount and origin of seminal plasma influence neutrophil extracellular traps formation, whereas sex-sorted sperm did not affect the reaction.


Assuntos
Armadilhas Extracelulares , Preservação do Sêmen , Animais , Bovinos , Criopreservação/veterinária , Feminino , Inseminação Artificial/veterinária , Masculino , Sêmen , Preservação do Sêmen/veterinária , Espermatozoides
3.
Theriogenology ; 131: 182-192, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30981973

RESUMO

Steroid hormones are regulators in the fine-tuned process of follicular development. During final maturation in vivo a switch from oestradiol (E2) to progesterone (P4) dominance within the follicle is well-described. This change is accompanied by the resumption of meiosis and results in the maturation of the oocyte. It also suggests the important role of these hormones. However, present in vitro maturation (IVM) systems do not completely mimic the in vivo situation, resulting in oocytes of reduced quality. Aim of the study was to determine the temporal pattern of steroid hormone concentrations in the IVM medium of bovine cumulus-oocyte-complexes (COC) at defined time points. The influence of different gonadotropin supplementations during IVM on oocyte maturation, as well as the molecular quality of the oocytes and their corresponding cumulus cells was investigated. COCs were obtained from abattoir-derived ovaries and matured in medium added with different compounds of gonadotropins (eCG/hCG; FSH/LH, each at 0.05 IU or 0.01 IU; only FSH; without gonadotropins) employing a standard protocol without oil overlay. In experiment 1, medium, oocytes and cumulus cells were collected at different time points (0 h [control], 4 h, 8 h, 12 h, 16 h, 20 h, 24 h) after IVM in just eCG/hCG-supplemented medium. In experiment 2, medium, oocytes and cumulus cells were collected at 0 h (control) and after 24 h of IVM with all above-named supplements. The E2 concentration remained similar during IVM whereas P4 concentration increased during experiment 1. No significant changes could be determined after the addition of different gonadotropins (experiment 2). These results suggest that during IVM the temporal pattern of E2 and P4 did not correspond with the pattern during final maturation in vivo. RT-qPCR was used to assess the relative abundance of developmentally important genes in oocytes (BMP15; GDF9; ZAR1; PGR; PGRMC1/2; G6PD; StAR; ESR1/2; SULT1E1; STS; SOAT) and cumulus cells (ESR1/2; FSHR; LHCGR; CYP19A1; HSD3B1; PGR; PGRMC1/2; SULT1E1; STS; SOAT) at all collection points in both experiments. Most transcripts follow a time-regulated mRNA expression pattern during the entire in vitro maturation period. In addition, the expression of the analyzed transcripts was not influenced by the different gonadotropin supplementations during the IVM period. In all, this underlines that present conditions of IVM do not reflect the in vivo situation and require further optimisation.


Assuntos
Bovinos , Células do Cúmulo/enzimologia , Gonadotropinas/farmacologia , Oócitos/enzimologia , Animais , Estradiol/metabolismo , Feminino , Perfilação da Expressão Gênica/veterinária , Hormônios Esteroides Gonadais/metabolismo , Técnicas de Maturação in Vitro de Oócitos/veterinária , Oócitos/crescimento & desenvolvimento , Progesterona/metabolismo
4.
J Steroid Biochem Mol Biol ; 179: 79-87, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29262378

RESUMO

Historically sulfonated steroids were primarily considered as inactive metabolites destined for elimination. However, more recently they have been increasingly recognized as precursors for the production of bioactive steroids in target tissues and as functional molecules without preceding hydrolysis. In order to comprehensively characterize their occurrence in cyclic cows and their formation and hydrolysis in bovine ovarian steroidogenesis, ovaries from cyclic cows were screened for the expression of oestrogen sulfotransferase (SULTE1) and steroid sulfatase (STS) by Western blot and immunohistochemistry. Moreover, a broad spectrum of 13 sulfonated steroids was measured applying liquid chromatography-tandem mass spectrometry (LC-MS/MS) in blood samples collected from three cycling heifers during defined stages of the ovarian cycle and in fluid obtained from ovarian follicles of different size. SULT1E1 was undetectable in ovarian tissues. For STS only a weak immunostaining was found predominantly in granulosa cells of larger follicles. However, no specific band occurred in Western blot. In blood, concentrations of all sulfonated steroids investigated were below the limit of quantification (LOQ). In follicular fluid, only cholesterol sulfate was measured in considerable concentrations (328.3 ±â€¯63.8 ng/ml). However, the role of cholesterol sulfate in bovine follicular steroidogenesis remains unclear as concentrations were obviously unrelated to follicular size. The remaining sulfonated steroids investigated were undetectable or only slightly exceeded LOQ in a minor proportion of samples. The results are clearly contrary to a role of sulfonated steroids as important precursors, intermediates or products of bovine ovarian steroidogenesis.


Assuntos
Ovário/metabolismo , Esteroides/sangue , Esteril-Sulfatase/metabolismo , Sulfotransferases/metabolismo , Animais , Bovinos , Ésteres do Colesterol/metabolismo , Estradiol/sangue , Estro/metabolismo , Feminino , Líquido Folicular/metabolismo , Progesterona/sangue , Esteroides/análise , Esteroides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA