Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Med ; 13(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38398295

RESUMO

Background: In high temperatures, adequate hydration is vital for sustained physical exercise. This study explores the effect of three hydration strategies on physiological indices and work intensity. Methods: The research involved 12 healthy males who engaged in three test series, each separated by a one-week interval. During the trials, participants underwent a 120 min cycling session in a thermal climate chamber (temperature: 31 ± 2 °C, humidity: 60 ± 3%, air movement: <1 m/s). Measurements of rectal temperature (Tre) and heart rate (HR), and assessment of subjective workload perception, and thermal comfort were made both before and during the exercise. The computation of the physical strain index (PSI) relied on Tre and HR values. Three hydration strategies (isotonic drink, water, and no hydration) were administered before, during, and after the exercise. Results: Regardless of the hydration strategy, the participants' mean body mass decreased as a result of the exercise. Statistically significant differences in HR were observed between the no-hydration and water groups (p < 0.036). The mean PSI values significantly varied between hydration strategies, with the no hydration group exhibiting a higher PSI compared to the isotonic drink or water groups (p < 0.001). Conclusions: All hydration strategies contribute to thermoregulatory processes and mitigate the rise in internal body temperature during sustained physical exercise in elevated ambient temperatures.

2.
Biology (Basel) ; 12(5)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37237501

RESUMO

BACKGROUND: Increased internal body temperature during dehydration can be accompanied by water-electrolyte imbalances, higher levels of lactate during and after physical exertion, and changes in blood volume. Adequate hydration with carbohydrate-electrolyte fluids during physical activity can prevent dehydration and delay the onset of fatigue, allowing for proper biochemical and hematological reactions during exertion. A suitable drinking plan should consider the pre-exercise hydration level as well as the requirements for fluids, electrolytes, and substrates before, during, and after exercise. The objective of this study was to assess the impact of different hydration strategies (isotonic, water, and no hydration) on hematological indicators (hemoglobin concentration, hematocrit number, erythrocyte count, leukocyte count, and mean corpuscular volume) and lactate concentration during prolonged physical exertion in a high-temperature environment in young men. METHODS: The research method was quasi-experimental. The study involved 12 healthy men aged 20.6 ± 0.9 years, who were characterized by a body height (BH) of 177.2 ± 4.8 cm, a body mass (BM) of 74.4 ± 7.6 kg, a lean body mass (LBM) of 61.1 ± 6.1 kg, and a body mass index (BMI) of 23.60 ± 0.48. Measurements were taken of body composition and hematological and biochemical indicators. The main tests consisted of three series of tests separated by a one-week break. During the tests, the men performed a 120 min exercise with an intensity of 110 W on a cycle ergometer in a thermo-climatic chamber at an ambient temperature of 31 ± 2 °C. During exertion, the participants consumed isotonic fluids or water in an amount of 120-150% of the lost water every 15 min. The participants who exercised without hydration did not consume any fluids. RESULTS: Significant differences in serum volume were observed between the use of isotonic beverage and no hydration (p = 0.002) and between the use of isotonic beverage and water (p = 0.046). Immediately after the experimental exercise, hemoglobin values were significantly higher with no hydration than with water (p = 0.002). An even stronger significance of differences in hemoglobin was observed between no hydration and isotonic beverage consumption (p < 0.001). There was a statistically significant difference in the number of leukocytes between the consumption of isotonic beverage and no hydration (p = 0.006). CONCLUSIONS: Each active hydration strategy allows for a better maintenance of water-electrolyte homeostasis during physical exertion in a high-temperature environment, and isotonic beverage consumption had a greater impact on hydrating extracellular spaces with the smallest changes in hematological indicators.

3.
Antioxidants (Basel) ; 12(3)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36978890

RESUMO

Physical exercise is associated with an increase in the speed of metabolic processes to supply energy to working muscles and endogenous heat production. Intense sweating caused by the work performed at high ambient temperatures is associated with a significant loss of water and electrolytes, leading to dehydration. This study aimed to examine the effectiveness of different hydration strategies in young men during prolonged exercise at elevated ambient temperatures on levels of pro-oxidative and antioxidant status, oxidative status markers (TAC/TOC), muscle cell damage (Mb, LDH), and inflammatory status (WBC, CRP, IL-1ß). The study was conducted on a group of 12 healthy men with average levels of aerobic capacity. The intervention consisted of using various hydration strategies: no hydration; water; and isotonic drinks. The examination was di-vided into two main stages. The first stage was a preliminary study that included medical exami-nations, measurements of somatic indices, and exercise tests. The exercise test was performed on a cycle ergometers. Their results were used to determine individual relative loads for the main part of the experiment. In the second stage, the main study was conducted, involving three series of weekly experimental tests using a cross-over design. The change in plasma volume (∆PV) measured im-mediately and one hour after the exercise test was significantly dependent on the hydration strategy (p = 0.003 and p = 0.002, respectively). The mean values of oxidative status did not differ signifi-cantly between the hydration strategy used and the sequence in which the test was performed. Using isotonic drinks, due to the more efficient restoration of the body's water and electrolyte balance compared to water or no hydration, most effectively protects muscle cells from the negative effects of exercise, leading to heat stress of exogenous and endogenous origin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA