Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 15(11): 2359-2371, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38728258

RESUMO

Elucidating the underlying principles of amyloid protein self-assembly at nanobio interfaces is extremely challenging due to the diversity in physicochemical properties of nanomaterials and their physical interactions with biological systems. It is, therefore, important to develop nanoscale materials with dynamic features and heterogeneities. In this work, through engineering of hierarchical polyethylene glycol (PEG) structures on gold nanoparticle (GNP) surfaces, tailored nanomaterials with different surface properties and conformations (GNPs-PEG) are created for modulating the self-assembly of a widely studied protein, insulin, under amyloidogenic conditions. Important biophysical studies including thioflavin T (ThT) binding, circular dichroism (CD), surface plasmon resonance (SPR), and atomic force microscopy (AFM) showed that higher-molecular weight GNPs-PEG triggered the formation of amyloid fibrils by promoting adsorption of proteins at nanoparticle surfaces and favoring primary nucleation rate. Moreover, the modulation of fibrillation kinetics reduces the overall toxicity of insulin oligomers and fibrils. In addition, the interaction between the PEG polymer and amyloidogenic insulin examined using MD simulations revealed major changes in the secondary structural elements of the B chain of insulin. The experimental findings provide molecular-level descriptions of how the PEGylated nanoparticle surface modulates protein adsorption and drives the self-assembly of insulin. This facile approach provides a new avenue for systematically altering the binding affinities on nanoscale surfaces by tailoring their topologies for examining adsorption-induced fibrillogenesis phenomena of amyloid proteins. Together, this study suggests the role of nanobio interfaces during surface-induced heterogeneous nucleation as a primary target for designing therapeutic interventions for amyloid-related neurodegenerative disorders.


Assuntos
Amiloide , Ouro , Insulina , Nanopartículas Metálicas , Polietilenoglicóis , Ouro/química , Nanopartículas Metálicas/química , Humanos , Insulina/metabolismo , Insulina/química , Polietilenoglicóis/química , Amiloide/metabolismo , Amiloide/química , Microscopia de Força Atômica , Propriedades de Superfície , Dicroísmo Circular , Simulação de Dinâmica Molecular , Ressonância de Plasmônio de Superfície
2.
ACS Omega ; 9(28): 30544-30558, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39035936

RESUMO

Clinical application of anticancer drugs is mostly limited due to their hydrophobic nature, which often results in lower bioavailability and lesser retention in systemic circulation. Despite extensive research on the development of targeted drug delivery systems for cancer treatment, delivery of hydrophobic therapeutic drugs to tumor cells remains a major challenge in the field. To address these concerns, we have precisely engineered a new hyperbranched polymer for the targeted delivery of hydrophobic drugs by using a malonic acid-based A2B monomer and 1,6-hexanediol. The choice of monomer systems in our design allows for the formation of higher molecular weight polymers with hydrophobic cavities for the efficient encapsulation of therapeutic drugs that exhibit poor water solubility. Using several experimental techniques such as NMR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform-infrared (FT-IR), and gel permeation chromatography (GPC), the synthesized polymer was characterized, which indicated its dendritic structure, thermal stability, and amorphous nature, making it suitable as a drug delivery system. Following characterizations, theranostic nanoplatforms were formulated using a one-pot solvent diffusion method to coencapsulate hydrophobic drugs, BQU57 and doxorubicin. To achieve targeted delivery of loaded therapeutic drugs in A549 cancer cells, the surface of the polymeric nanoparticle was conjugated with folic acid. The therapeutic efficacy of the delivery system was determined by various cell-based in vitro experiments, including cytotoxicity, cell internalizations, reactive oxygen species (ROS), apoptosis, migration, and comet assays. Overall, findings from this study indicate that the synthesized dendritic polymer is a promising carrier for hydrophobic anticancer drugs with higher biocompatibility, stability, and therapeutic efficacy for applications in cancer therapy.

3.
Biosensors (Basel) ; 13(1)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36671944

RESUMO

Frequent outbreaks of food-borne pathogens, particularly E. coli O157:H7, continue to impact human health and the agricultural economy tremendously. The required cell count for this pathogenic strain of E. coli O157:H7 is relatively low and hence it is vital to detect at low colony forming unit (CFU) counts. Available detection methods, though sensitive, fall short in terms of timeliness and often require extensive sample processing. To overcome these limitations, we propose a novel magneto-plasmonic nanosensor (MPnS) by integrating surface plasmon resonance (SPR) properties with spin-spin magnetic relaxation (T2 MR) technology. We engineered MPnS by encapsulating several gold nanoparticles (GNPs) within the polymer-coating of iron oxide nanoparticles (IONPs). First, the polyacrylic acid (PAA)-coated IONPs were synthesized using a solvent precipitation method, then gold chloride solution was used to synthesize GNPs and encapsulate them within the PAA-coatings of IONPs in one step. A magnetic separation technique was used to purify the MPnS and the presence of GNPs within IONPs was characterized using transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and other spectroscopic methods. The synthesized MPnS exhibits MR relaxation properties while possessing amplified optical properties than conventional GNPs. This allows for rapid and ultrasensitive detection of E. coli O157:H7 by SPR, T2 MR, and colorimetric readout. Experiments conducted in simple buffer and in milk as a complex media demonstrated that our MPnS-based assay could detect as low as 10 CFUs of this pathogenic strain of E. coli O157:H7 in minutes with no cross-reactivity. Overall, the formulated MPnS is robust and holds great potential for the ultrasensitive detection of E. coli O157:H7 in a simple and timely fashion. Moreover, this platform is highly customizable and can be used for the detection of other foodborne pathogens.


Assuntos
Técnicas Biossensoriais , Escherichia coli O157 , Nanopartículas Metálicas , Humanos , Animais , Microbiologia de Alimentos , Ouro/química , Nanopartículas Metálicas/química , Leite , Técnicas Biossensoriais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA