Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
País de afiliação
Intervalo de ano de publicação
1.
Fa Yi Xue Za Zhi ; 36(6): 848-851, 2020 Dec.
Artigo em Zh | MEDLINE | ID: mdl-33550734

RESUMO

ABSTRACT: In cases on compensation for personal injury, the issue of medical expense compensation involves the vital interests of the compensation obligor, the injured party and the medical institution. The rationality of medical expenses is likely to be controversial, however, there is no unified standard and stipulation for the medical expense rationality identification in forensic clinical identification at present, therefore, in the practice of judicial expertise, expert opinions easily become confused, and the legitimate rights of the parties could be infringed, which affects the impartiality and authority of judicial expertise. This article starts with the concept of medical expense and the rationality of medical expense and the reasons for disputes over the rationality of medical expense, to put forward the basic principles that should be followed in the identification of rationality of medical expenses, for peer reference.


Assuntos
Prova Pericial , Medicina Legal , Dissidências e Disputas
2.
Braz J Med Biol Res ; 47(4): 279-86, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24652327

RESUMO

SRY-related high-mobility-group box 9 (Sox9) gene is a cartilage-specific transcription factor that plays essential roles in chondrocyte differentiation and cartilage formation. The aim of this study was to investigate the feasibility of genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs). After they were isolated from human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The cells were assessed for morphology and chondrogenic differentiation. The isolated cells with a fibroblast-like morphology in monolayer culture were positive for the MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9 overexpression induced accumulation of sulfated proteoglycans, without altering the cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9 markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs compared with empty vector-transfected counterparts. Reverse transcription-polymerase chain reaction analysis further confirmed the elevation of aggrecan and type II collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9 overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential implications in cartilage tissue engineering.


Assuntos
Diferenciação Celular/genética , Condrogênese/genética , Sangue Fetal/citologia , Células-Tronco Mesenquimais/citologia , Fatores de Transcrição SOX9/genética , Agrecanas/biossíntese , Western Blotting , Cartilagem/metabolismo , Proliferação de Células/genética , Condrócitos/metabolismo , Colágeno Tipo II/biossíntese , Citometria de Fluxo , Regulação da Expressão Gênica/fisiologia , Proteínas de Fluorescência Verde , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Imuno-Histoquímica , Imunofenotipagem , Cultura Primária de Células , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Engenharia Tecidual , Transfecção
3.
Braz. j. med. biol. res ; 47(4): 279-286, 8/4/2014. tab, graf
Artigo em Inglês | LILACS | ID: lil-705770

RESUMO

SRY-related high-mobility-group box 9 (Sox9) gene is a cartilage-specific transcription factor that plays essential roles in chondrocyte differentiation and cartilage formation. The aim of this study was to investigate the feasibility of genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs). After they were isolated from human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The cells were assessed for morphology and chondrogenic differentiation. The isolated cells with a fibroblast-like morphology in monolayer culture were positive for the MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9 overexpression induced accumulation of sulfated proteoglycans, without altering the cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9 markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs compared with empty vector-transfected counterparts. Reverse transcription-polymerase chain reaction analysis further confirmed the elevation of aggrecan and type II collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9 overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential implications in cartilage tissue engineering.


Assuntos
Humanos , Diferenciação Celular/genética , Condrogênese/genética , Sangue Fetal/citologia , Células-Tronco Mesenquimais/citologia , Fatores de Transcrição SOX9/genética , Agrecanas/biossíntese , Western Blotting , Cartilagem/metabolismo , Proliferação de Células/genética , Condrócitos/metabolismo , Colágeno Tipo II/biossíntese , Citometria de Fluxo , Proteínas de Fluorescência Verde , Regulação da Expressão Gênica/fisiologia , Células Endoteliais da Veia Umbilical Humana/citologia , Imuno-Histoquímica , Imunofenotipagem , Cultura Primária de Células , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Engenharia Tecidual , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA