Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Environ Sci Technol ; 58(1): 591-602, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38112274

RESUMO

The presence of elevated ammonia levels is widely recognized as a significant contributor to process inhibition in biogas production, posing a common challenge for biogas plant operators. The present study employed a combination of biochemical, genome-centric metagenomic and metatranscriptomic data to investigate the response of the biogas microbiome to two shock loads induced by single pulses of elevated ammonia concentrations (i.e., 1.5 g NH4+/LR and 5 g NH4+/LR). The analysis revealed a microbial community of high complexity consisting of 364 Metagenome Assembled Genomes (MAGs). The hydrogenotrophic pathway was the primary route for methane production during the entire experiment, confirming its efficiency even at high ammonia concentrations. Additionally, metatranscriptomic analysis uncovered a metabolic shift in the methanogens Methanothrix sp. MA6 and Methanosarcina flavescens MX5, which switched their metabolism from the acetoclastic to the CO2 reduction route during the second shock. Furthermore, multiple genes associated with mechanisms for maintaining osmotic balance in the cell were upregulated, emphasizing the critical role of osmoprotection in the rapid response to the presence of ammonia. Finally, this study offers insights into the transcriptional response of an anaerobic digestion community, specifically focusing on the mechanisms involved in recovering from ammonia-induced stress.


Assuntos
Amônia , Microbiota , Amônia/metabolismo , Amônia/farmacologia , Biocombustíveis , Reatores Biológicos , Metagenoma , Anaerobiose , Metano , Metagenômica
2.
J Environ Manage ; 301: 113853, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624575

RESUMO

Olive mill wastewater, a by-product of olive oil production after the operation of three-phase decanters, was used in a thermophilic anaerobic digester targeting efficient bioconversion of its organic load into biogas. An active anaerobic inoculum originating from a mesophilic reactor, was acclimatized under thermophilic conditions and was filled into a high-rate upflow packed bed reactor. Its performance was tested towards the treatment efficacy of olive mill wastewater under thermophilic conditions reaching the minimum hydraulic retention time of 4.2 d with promising results. As analysis of the microbial communities is considered to be the key for the development of anaerobic digestion optimization techniques, the present work focused on characterizing the microbial community and its variation during the reactor's runs, via 16S rRNA amplicon sequencing. Identification of new microbial species and taxonomic groups determination is of paramount importance as these representatives determine the bioprocess outcome. The current study results may contribute to further olive mill wastewater exploitation as a potential source for efficient biogas production.


Assuntos
Reatores Biológicos , Águas Residuárias , Anaerobiose , Biocombustíveis , Metano , RNA Ribossômico 16S/genética
3.
Biotechnol Appl Biochem ; 67(6): 1020-1029, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31880341

RESUMO

The lipolytic oleaginous yeast Yarrowia lipolytica was used in the bioaugmentation and biovalorization of oily industrial wastes during successive-batch fermentation. Five cycles of nonsterile successive batch fermentation with 70% medium replacement achieved the highest oil removal of 68.1 ± 5.60% and produced biomass and lipid yields of 0.213 ± 0.07 g/g-COD and 146.2 ± 46.5 mg/g-COD, respectively. The cell-bound lipase activity observed in the system was 170.74 ± 32 U/L. The auto-flocculation efficiency of the biomass was >90% within 60 Min. The microbial community changes between Y. lipolytica and indigenous microorganisms were monitored by metagenomic next-generation sequencing of internal transcribed spacer rDNA regions for yeasts and 16S rRNA gene for bacteria. Ylipolytica lipolytica was retained in the consortium together with other indigenous strains until the fifth cycle. Other minor oleaginous yeasts such as Kodamaea ohmeri and Candida tropicalis as well as polyhydroxyalkanoate-accumulating bacteria were found and are likely to have participated in lipid production. This study has shown the robustness of Y. lipolytica in nonsterile successive batch fermentation and its use could contribute greatly to the practical valorization of industrial wastes for lipids and lipases.


Assuntos
Biomassa , Proteínas Fúngicas , Resíduos Industriais , Lipase , Lipídeos , Yarrowia , Biodegradação Ambiental , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lipase/genética , Lipase/metabolismo , Lipídeos/biossíntese , Lipídeos/genética , Yarrowia/genética , Yarrowia/crescimento & desenvolvimento
4.
Appl Environ Microbiol ; 84(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30006398

RESUMO

The mechanisms by which specific anaerobic microorganisms remain firmly attached to lignocellulosic material, allowing them to efficiently decompose organic matter, have yet to be elucidated. To circumvent this issue, microbiomes collected from anaerobic digesters treating pig manure and meadow grass were fractionated to separate the planktonic microbes from those adhered to lignocellulosic substrate. Assembly of shotgun reads, followed by a binning process, recovered 151 population genomes, 80 out of which were completely new and were not previously deposited in any database. Genome coverage allowed the identification of microbial spatial distribution in the engineered ecosystem. Moreover, a composite bioinformatic analysis using multiple databases for functional annotation revealed that uncultured members of the Bacteroidetes and Firmicutes follow diverse metabolic strategies for polysaccharide degradation. The structure of cellulosome in Firmicutes species can differ depending on the number and functional roles of carbohydrate-binding modules. In contrast, members of the Bacteroidetes are able to adhere to and degrade lignocellulose due to the presence of multiple carbohydrate-binding family 6 modules in beta-xylosidase and endoglucanase proteins or S-layer homology modules in unknown proteins. This study combines the concept of variability in spatial distribution with genome-centric metagenomics, allowing a functional and taxonomical exploration of the biogas microbiome.IMPORTANCE This work contributes new knowledge about lignocellulose degradation in engineered ecosystems. Specifically, the combination of the spatial distribution of uncultured microbes with genome-centric metagenomics provides novel insights into the metabolic properties of planktonic and firmly attached to plant biomass bacteria. Moreover, the knowledge obtained in this study enabled us to understand the diverse metabolic strategies for polysaccharide degradation in different species of Bacteroidetes and Clostridiales Even though structural elements of cellulosome were restricted to Clostridiales species, our study identified a putative mechanism in Bacteroidetes species for biomass decomposition, which is based on a gene cluster responsible for cellulose degradation, disaccharide cleavage to glucose, and transport to cytoplasm.


Assuntos
Bactérias/metabolismo , Genoma Bacteriano , Lignina/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Reatores Biológicos/microbiologia , Esterco/microbiologia , Metagenômica , Filogenia , Suínos
5.
Appl Microbiol Biotechnol ; 101(3): 1313-1322, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27942906

RESUMO

Upflow anaerobic sludge blanket (UASB) reactor is one of the most applied technologies for various high-strength wastewater treatments. The present study analysed the microbial community changes in UASB granules during the transition from mesophilic to thermophilic conditions. Dynamicity of microbial community in granules was analysed using high-throughput sequencing of 16S ribosomal RNA gene amplicons, and the results showed that the temperature strictly determines the diversity of the microbial consortium. It was demonstrated that most of the microbes which were present in the initial mesophilic community were not found in the granules after the transition to thermophilic conditions. More specifically, only members from family Anaerolinaceae managed to tolerate the temperature change and contributed in maintaining the physical integrity of granular structure. On the contrary, new hydrolytic and fermentative bacteria were quickly replacing the old members in the community. A direct result from this abrupt change in the microbial diversity was the accumulation of volatile fatty acids and the concomitant pH drop in the reactor inhibiting the overall anaerobic digestion process. Nevertheless, by maintaining deliberately the pH levels at values higher than 6.5, a methanogen belonging to Methanoculleus genus emerged in the community enhancing the methane production.


Assuntos
Metano/metabolismo , Consórcios Microbianos/genética , Esgotos/microbiologia , Anaerobiose , Bactérias/genética , Reatores Biológicos , DNA Bacteriano/genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Consórcios Microbianos/fisiologia , Filogenia , RNA Ribossômico 16S , Temperatura , Eliminação de Resíduos Líquidos
6.
Anaerobe ; 46: 69-77, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28057558

RESUMO

Upflow anaerobic sludge blanket (UASB) technology refers to reactor technology where granules, i.e. self-immobilised microbial associations, are the biological catalysts involved in the anaerobic digestion process. During the start-up period, UASB reactors operate at relatively long HRT and therefore the liquid phase of the reactor becomes a favourable environment for microbial growth. The current study aimed to elucidate the dynamicity of the suspended microbial community in UASB reactors, during the transition from mesophilic to thermophilic conditions. High throughput 16S rRNA amplicon sequencing was used to characterize the taxonomic composition of the microbiome. The results showed that the microbial community was mainly composed by hydrolytic and fermentative bacteria. Results revealed relevant shifts in the microbial community composition, which is mainly determined by the operational conditions and the reactor performance. Finally, shared OTUs between the microbial consortia of the suspended and the granular sludge showed that planktonic microbiota is significantly influencing the granule microbial community composition.


Assuntos
Anaerobiose , Reatores Biológicos/microbiologia , Fermentação , Microbiota , Plâncton/microbiologia , Esgotos/microbiologia , Análise por Conglomerados , Sequenciamento de Nucleotídeos em Larga Escala , Hidrólise , Metagenômica/métodos , Metano/biossíntese , Interações Microbianas , RNA Ribossômico 16S/genética
7.
Anaerobe ; 46: 23-32, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28219787

RESUMO

Recently, a first comprehensive catalogue of microbial genomes populating biogas reactors treating manure and agro-industrial residues was determined by sequencing samples collected from 22 biogas reactors including laboratory and full scale. Among the archaeal community, one of the most abundant methanogens belongs to Methanoculleus genus and for this reason it was provisionally named Methanoculleus sp. DTU006. Its full length 16S rRNA sequence is 97% similar to Methanoculleus marisnigri JR1 and to Methanoculleus palmolei DSM 4273. Despite the high similarity of the 16S gene sequence, Average Nucleotide Identity calculation (ANI) calculated on all protein encoding genes indicated that the two most similar species, Methanoculleus bourgensis MS2T and Methanoculleus sp. MAB1, are divergent enough to define Methanoculleus sp. DTU006 as new archaeal species. Its genome (2.15 Mbp) has an estimated completeness around 93%. Analysis of the metabolic pathways using KEGG confirmed that it is a hydrogenotrophic methanogen and therefore it is proposed the Candidatus status by naming it as "Candidatus Methanoculleus thermohydrogenotrophicum".


Assuntos
Biocombustíveis , Reatores Biológicos , Metagenômica , Methanomicrobiaceae/genética , Methanomicrobiaceae/metabolismo , Anaerobiose , Análise por Conglomerados , Código de Barras de DNA Taxonômico , Perfilação da Expressão Gênica , Genoma Arqueal , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Metagenômica/métodos , Metano/biossíntese , Methanomicrobiaceae/classificação , Filogenia , Plantas/metabolismo , RNA Ribossômico 16S/genética
8.
Environ Sci Technol ; 50(11): 6079-90, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27154312

RESUMO

In the present study, RNA-sequencing was used to elucidate the change of anaerobic digestion metatranscriptome after long chain fatty acids (oleate) exposure. To explore the general transcriptional behavior of the microbiome, the analysis was first performed on shotgun reads without considering a reference metagenome. As a second step, RNA reads were aligned on the genes encoded by the microbial community, revealing the expression of more than 51 000 different transcripts. The present study is the first research which was able to dissect the transcriptional behavior at a single species level by considering the 106 microbial genomes previously identified. The exploration of the metabolic pathways confirmed the importance of Syntrophomonas species in fatty acids degradation, and also highlighted the presence of protective mechanisms toward the long chain fatty acid effects in bacteria belonging to Clostridiales, Rykenellaceae, and in species of the genera Halothermothrix and Anaerobaculum. Additionally, an interesting transcriptional activation of the chemotaxis genes was evidenced in seven species belonging to Clostridia, Halothermothrix, and Tepidanaerobacter. Surprisingly, methanogens revealed a very versatile behavior different from each other, even among similar species of the Methanoculleus genus, while a strong increase of the expression level in Methanosarcina sp. was evidenced after oleate addition.


Assuntos
Biocombustíveis , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Bactérias Anaeróbias/metabolismo , Ácidos Graxos/metabolismo
9.
Environ Sci Technol ; 49(20): 12585-93, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26390125

RESUMO

This study proposes an innovative setup composed by two stage reactors to achieve biogas upgrading coupling the CO2 in the biogas with external H2 and subsequent conversion into CH4 by hydrogenotrophic methanogenesis. In this configuration, the biogas produced in the first reactor was transferred to the second one, where H2 was injected. This configuration was tested at both mesophilic and thermophilic conditions. After H2 addition, the produced biogas was upgraded to average CH4 content of 89% in the mesophilic reactor and 85% in the thermophilic. At thermophilic conditions, a higher efficiency of CH4 production and CO2 conversion was recorded. The consequent increase of pH did not inhibit the process indicating adaptation of microorganisms to higher pH levels. The effects of H2 on the microbial community were studied using high-throughput Illumina random sequences and full-length 16S rRNA genes extracted from the total sequences. The relative abundance of archaeal community markedly increased upon H2 addition with Methanoculleus as dominant genus. The increase of hydrogenotrophic methanogens and syntrophic Desulfovibrio and the decrease of aceticlastic methanogens indicate a H2-mediated shift toward the hydrogenotrophic pathway enhancing biogas upgrading. Moreover, Thermoanaerobacteraceae were likely involved in syntrophic acetate oxidation with hydrogenotrophic methanogens in absence of aceticlastic methanogenesis.


Assuntos
Biocombustíveis , Reatores Biológicos/microbiologia , Biotecnologia/métodos , Metano/metabolismo , Archaea/genética , Archaea/metabolismo , Biotecnologia/instrumentação , Dióxido de Carbono/metabolismo , Hidrogênio/metabolismo , Consórcios Microbianos/genética , RNA Ribossômico 16S/genética
10.
Environ Technol ; 35(9-12): 1219-25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24701918

RESUMO

Poultry manure is an ammonia-rich substrate due to its high content of proteins and amino acids. Ammonia is the major inhibitor of anaerobic digestion (AD) process, affecting biogas production and causing great economic losses to the biogas plants. In this study, the effect of different natural zeolite dosages on the mesophilic AD of poultry manure inoculated with a non-acclimatized to ammonia inoculum (dairy manure) was investigated. Additionally, a comparative analysis was performed between the data extracted from this study and the results of a previous study, which has been conducted under the same experimental conditions but with the use of ammonia acclimatized inoculum (swine manure). At 5 and 10 g zeolite L(-1), the methane yield of poultry manure was 43.4% and 80.3% higher compared with the experimental set without zeolite addition. However, the ammonia non-acclimatized inoculum was not efficient in digesting poultry manure even in the presence of 10 g zeolite L(-1), due to low methane production (only 39%) compared with the maximum theoretical yield. Finally, ammonia acclimatized inoculum and zeolite have demonstrated a possible 'synergistic effect', which led to a more efficient AD of poultry manure. The results of this study could potentially been used by the biogas plant operators to efficiently digest poultry manure.


Assuntos
Esterco/microbiologia , Gerenciamento de Resíduos , Zeolitas/administração & dosagem , Amônia/análise , Anaerobiose , Animais , Bovinos , Ácidos Graxos Voláteis/análise , Concentração de Íons de Hidrogênio , Aves Domésticas , Suínos
11.
Water Res ; 257: 121662, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38678834

RESUMO

This study investigated the impact of two low-temperature thermal pre-treatments on continuous anaerobic reactors' performance, sequentially fed with sludge of different total solids content (∼3 % and ∼6 %) and subjected to progressively increasing Organic Loading Rates (OLR) from 1.0 to 2.5 g volatile solids/(LReactor⋅day). Assessing pre-treatments' influence on influent sludge characteristics revealed enhanced organic matter hydrolysis, facilitating sludge solubilization and methanogenesis; volatile fatty acids concentration also increased, particularly in pre-treated sludge of ∼6 % total solids, indicating improved heating efficiency under increased solids content. The reactor fed with sludge pre-treated at 45 °C for 48 h and 55 °C for an extra 48 h exhibited the highest methane yield under all applied OLRs, peaking at 240 ± 3.0 mL/g volatile solids at the OLR of 2.5 g volatile solids/(LReactor⋅day). 16S rRNA gene sequencing demonstrated differences in the reactors' microbiomes as evidence of sludge thickening and the different pre-treatments applied, which promoted the release of organic matter in diverse concentrations and compositions. Finally, the microbial analysis revealed that specific foam-related genera increased in abundance in the foam layer of reactors' effluent bottles, dictating their association with the sludge foaming incidents that occurred inside the reactors during their operation at 2.0 g volatile solids/(LReactor⋅day).


Assuntos
Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , RNA Ribossômico 16S/genética , Metano/metabolismo , Ácidos Graxos Voláteis/metabolismo , Anaerobiose , Microbiota
12.
Artigo em Inglês | MEDLINE | ID: mdl-38517633

RESUMO

Anaerobic digestate is a popular soil additive which can promote sustainability and transition toward a circular economy. This study addresses how anaerobic digestate modifies soil health when combined with a common chemical fertilizer. Attention was given to soil microbes and, a neglected but of paramount importance soil taxonomic group, soil nematodes. A mesocosm experiment was set up in order to assess the soil's microbial and nematode community. The results demonstrated that the microbial diversity was not affected by the different fertilization regimes, although species richness increased after digestate and mixed fertilization. The composition and abundance of nematode community did not respond to any treatment. Mixed fertilization notably increased potassium (K) and boron (B) levels, while nitrate (NO3-) levels were uniformly elevated across fertilized soils, despite variations in nitrogen input. Network analysis revealed that chemical fertilization led to a densely interconnected network with mainly mutualistic relationships which could cause ecosystem disruption, while digestate application formed a more complex community based on bacterial interactions. However, the combination of both orchestrated a more balanced and less complex community structure, which is more resilient to random disturbances, but on the downside, it is more likely to collapse under targeted perturbations.

13.
Bioresour Technol ; 385: 129456, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37406828

RESUMO

Packing materials improve biological methanation efficiency in Trickle Bed Reactors. The present study, which lies in the field of energy production and biotechnology, entailed the evaluation of commercial pelletized activated carbon and Raschig rings as packing materials. The evaluation focused on monitoring process indicators and examining the composition of the microbial community. Activated carbon resulted in enhanced methane purity, achieving a two-fold higher methane percentage than Raschig rings, maintaining a stable pH level within a range of 7-8 and reducing gas retention time from 6 h to 90 min. Additionally, the digestate derived from biogas plant was found to be a sufficient nutrient source for the process. Fermentative species with genes for ß-oxidation, such as Amaricoccus sp. and Caloramator australicus could explain the production of hexanoic and valerate acids during reactor operation. Based on the physical properties of packing materials, the efficiency of biological methanation could be maximized.


Assuntos
Reatores Biológicos , Carvão Vegetal , Dióxido de Carbono , Biotecnologia/métodos , Biocombustíveis , Metano , Hidrogênio
14.
Chemosphere ; 297: 133989, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35181421

RESUMO

The present work was conducted to assess whether the implementation of Supercritical Carbon dioxide Explosion (SCE) is an efficient approach for sewage sludge pre-treatment. In this context, SCE was optimized with the aim to develop a method attempting to increase the biodegradability of sewage sludge's organic matter content, and thus, to enhance the subsequent anaerobic digestion and methane production. The statistical tool of response surface methodology was applied to evaluate the effects of the main pre-treatment parameters (i.e. temperature and time) and their interactions on methane yield, which was defined as the response. Temperature was found to be the most significant variable, having the greatest effect on methane yield. Following this, an optimum set of pre-treatment conditions corresponding to a temperature of 115 °C and time of 13 min, was determined. Under these optimum conditions, the predicted response value was 300 mL CH4/g of volatile solids. The corresponding experimental value obtained from the validation experiment fitted well with this value, clearly demonstrating the effective use of response surface methodology in optimizing SCE. Additionally, under optimum conditions, the methane yield presented a statistically significant increment of 8.7%, compared to untreated sludge. This revealed the impact of SCE as an effective and alternative way for the efficient pre-treatment of sewage sludge. Finally, thermal pre-treatment, alkaline and acidic hydrolysis were also applied to the already pre-treated sludge. It was concluded that the combined pre-treatment techniques contributed to a further increase of methane production compared to raw (untreated) substrate.


Assuntos
Dióxido de Carbono , Esgotos , Anaerobiose , Reatores Biológicos , Explosões , Metano , Esgotos/química
15.
Chemosphere ; 296: 133871, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35157886

RESUMO

Lactic acid is a valuable compound used in several industrial processes such as polymers, emulsifiers manufacturing, pharmaceutical, and cosmetic formulations. The present study aims to evaluate the potential use of food waste to produce lactic acid through fermentation, both by indigenous microbiota and by the bio-augmentation with two lactic acid bacteria, namely Lactobacillus plantarum BS17 and Lactobacillus casei BP2. Fermentation was studied both in batch and continuously fed anaerobic reactors at mesophilic conditions and a Response Surface Methodology approach was used to optimize the bioprocess performance and determine the environmental parameters (namely pH and time) that lead to the enhancement of lactic acid production during the batch fermentation by indigenous microorganisms. Results revealed an optimum set of conditions for lactic acid production at a pH value of 6.5 and a fermentation period of 3.5 days at 37 °C. Under these conditions lactic acid production reached a value of 23.07 g/L, which was very similar to the mathematically predicted ones, thus verifying the accuracy of the experimental design. This optimum set of conditions was further employed to examine the production of lactic acid under continuous fermentation operation. Furthermore, concentrations of volatile fatty acids and ethanol were monitored and found to be relatively low, with ethanol being the dominant by-product of fermentation, indicating the presence of heterofermentative bacteria in the food wastes. A final step of downstream process was performed resulting in the successful recovery of lactic acid with purity over 90%.


Assuntos
Ácido Láctico , Eliminação de Resíduos , Etanol , Fermentação , Alimentos
16.
Microbiome ; 10(1): 117, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35918706

RESUMO

BACKGROUND: Carbon fixation through biological methanation has emerged as a promising technology to produce renewable energy in the context of the circular economy. The anaerobic digestion microbiome is the fundamental biological system operating biogas upgrading and is paramount in power-to-gas conversion. Carbon dioxide (CO2) methanation is frequently performed by microbiota attached to solid supports generating biofilms. Despite the apparent simplicity of the microbial community involved in biogas upgrading, the dynamics behind most of the interspecies interaction remain obscure. To understand the role of the microbial species in CO2 fixation, the biofilm generated during the biogas upgrading process has been selected as a case study. The present work investigates via genome-centric metagenomics, based on a hybrid Nanopore-Illumina approach the biofilm developed on the diffusion devices of four ex situ biogas upgrading reactors. Moreover, genome-guided metabolic reconstruction and flux balance analysis were used to propose a biological role for the dominant microbes. RESULTS: The combined microbiome was composed of 59 species, with five being dominant (> 70% of total abundance); the metagenome-assembled genomes representing these species were refined to reach a high level of completeness. Genome-guided metabolic analysis appointed Firmicutes sp. GSMM966 as the main responsible for biofilm formation. Additionally, species interactions were investigated considering their co-occurrence in 134 samples, and in terms of metabolic exchanges through flux balance simulation in a simplified medium. Some of the most abundant species (e.g., Limnochordia sp. GSMM975) were widespread (~ 67% of tested experiments), while others (e.g., Methanothermobacter wolfeii GSMM957) had a scattered distribution. Genome-scale metabolic models of the microbial community were built with boundary conditions taken from the biochemical data and showed the presence of a flexible interaction network mainly based on hydrogen and carbon dioxide uptake and formate exchange. CONCLUSIONS: Our work investigated the interplay between five dominant species within the biofilm and showed their importance in a large spectrum of anaerobic biogas reactor samples. Flux balance analysis provided a deeper insight into the potential syntrophic interaction between species, especially Limnochordia sp. GSMM975 and Methanothermobacter wolfeii GSMM957. Finally, it suggested species interactions to be based on formate and amino acids exchanges. Video Abstract.


Assuntos
Biocombustíveis , Metagenoma , Anaerobiose , Reatores Biológicos , Dióxido de Carbono/análise , Firmicutes/metabolismo , Formiatos , Metano/metabolismo , Methanobacteriaceae/genética , Methanobacteriaceae/metabolismo
17.
Sci Total Environ ; 773: 144981, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940708

RESUMO

The aim of this work was to provide solid proofs regarding the achievement of "steady-state conditions", which means that the performance of the anaerobic digester is representative of the applied environmental conditions. For this reason, we investigated how, starting from different inoculum sources (i.e., municipal wastewater treatment, bio-waste treatment, and agricultural waste biogas plant), the microbial community adapted to the operational parameters and led to stable biogas production in thermophilic digesters treating the same influent feedstock. The results revealed that the different system achieved similar process performance and microbial community structure after a period that was equal to four hydraulic retention times, approved by a constant pH of 7.89 ± 0.08, 7.92 ± 0.05 and 7.85 ± 0.08, respectively, and stable TAN concentration of 1500 mg/L. Moreover, it was found that the microbial composition of the inocula was a key factor for the speed of achieving stable process performance; thus, a pre-adapted to the influent feedstock inoculum can shorten the stabilization process. On the contrary, after long term reactor operation, the microbial structure was shaped according to the chemical composition of the influent feedstock. The results of the study can also be used as a guide in future researches on anaerobic degradation, particularly in determining the time interval of an experiment to reflect changes in the microbial community of anaerobic digester.


Assuntos
Biocombustíveis , Microbiota , Anaerobiose , Reatores Biológicos , Sementes
18.
Sci Total Environ ; 778: 146296, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33714811

RESUMO

Co-digestion with lipid-rich substrates is a likely strategy in biogas plants, due to their high energy content. However, the process stability is vulnerable to inhibition due to the sudden increase of fatty-acid concentration. Therefore, techniques that promote the adaptation of the microorganisms to the presence of lipids have been proposed. In this frame, the initial hypothesis of the work was that a gradual change in feedstock composition would enable us to elucidate the microbial organisation as a result of deterministic (i.e. chemical composition of influent) and stochastic (e.g. interspecies interactions) factors. This study investigates the response of the biogas microbiome to gradual increment of the Organic Loading Rate by supplementing the influent feedstock with Na-Oleate. The results showed that as a response to the feedstock shifts three clusters describing microbes behaviours were formed. The dynamics and the functional role of the formed microbial clusters were unveiled, providing explanations for their abundance and behavior. Process monitoring indicated that the reactors responded immediately to lipid supplementation and they managed to stabilize their performance in a short period of time. The dominance of Candidatus Methanoculleus thermohydrogenotrophicum in the biogas reactors fed exclusively with cattle manure indicated that the predominant methanogenic pathway was hydrogenotrophic. Additionally, the abundance of this methanogen was further enhanced upon lipid supplementation and its growth was supported by syntrophic bacteria capable to metabolize fatty acids. However, with the shift back to the original feedstock (i.e. solely cattle manure), the microbial dynamicity significantly altered with a remarkable increment in the abundance of a propionate degrader affiliated to the order of Bacteroidales, which became the predominant microorganism of the consortium.


Assuntos
Biocombustíveis , Metagenômica , Anaerobiose , Animais , Reatores Biológicos , Bovinos , Metano
19.
Microbiome ; 8(1): 22, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32061251

RESUMO

Methanogenesis, a biological process mediated by complex microbial communities, has attracted great attention due to its contribution to global warming and potential in biotechnological applications. The current study unveiled the core microbial methanogenic metabolisms in anaerobic vessel ecosystems by applying combined genome-centric metagenomics and metatranscriptomics. Here, we demonstrate that an enriched natural system, fueled only with acetate, could support a bacteria-dominated microbiota employing a multi-trophic methanogenic process. Moreover, significant changes, in terms of microbial structure and function, were recorded after the system was supplemented with additional H2. Methanosarcina thermophila, the predominant methanogen prior to H2 addition, simultaneously performed acetoclastic, hydrogenotrophic, and methylotrophic methanogenesis. The methanogenic pattern changed after the addition of H2, which immediately stimulated Methanomicrobia-activity and was followed by a slow enrichment of Methanobacteria members. Interestingly, the essential genes involved in the Wood-Ljungdahl pathway were not expressed in bacterial members. The high expression of a glycine cleavage system indicated the activation of alternative metabolic pathways for acetate metabolism, which were reconstructed in the most abundant bacterial genomes. Moreover, as evidenced by predicted auxotrophies, we propose that specific microbes of the community were forming symbiotic relationships, thus reducing the biosynthetic burden of individual members. These results provide new information that will facilitate future microbial ecology studies of interspecies competition and symbiosis in methanogenic niches. Video abstract.


Assuntos
Bactérias/metabolismo , Redes e Vias Metabólicas , Metano/biossíntese , Microbiota , Acetatos/metabolismo , Anaerobiose , Bactérias/classificação , Reatores Biológicos , Crescimento Quimioautotrófico , Ecossistema , Perfilação da Expressão Gênica , Hidrogênio/metabolismo , Metagenômica , Methanosarcina/metabolismo
20.
Biotechnol Biofuels ; 13: 25, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32123542

RESUMO

BACKGROUND: Microorganisms in biogas reactors are essential for degradation of organic matter and methane production. However, a comprehensive genome-centric comparison, including relevant metadata for each sample, is still needed to identify the globally distributed biogas community members and serve as a reliable repository. RESULTS: Here, 134 publicly available metagenomes derived from different biogas reactors were used to recover 1635 metagenome-assembled genomes (MAGs) representing different biogas bacterial and archaeal species. All genomes were estimated to be > 50% complete and nearly half ≥ 90% complete with ≤ 5% contamination. In most samples, specialized microbial communities were established, while only a few taxa were widespread among the different reactor systems. Metabolic reconstruction of the MAGs enabled the prediction of functional traits related to biomass degradation and methane production from waste biomass. An extensive evaluation of the replication index provided an estimation of the growth dynamics for microbes involved in different steps of the food chain. CONCLUSIONS: The outcome of this study highlights a high flexibility of the biogas microbiome, allowing it to modify its composition and to adapt to the environmental conditions, including temperatures and a wide range of substrates. Our findings enhance our mechanistic understanding of the AD microbiome and substantially extend the existing repository of genomes. The established database represents a relevant resource for future studies related to this engineered ecosystem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA