Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 573(7773): 256-260, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31477908

RESUMO

Mediterranean climates are characterized by strong seasonal contrasts between dry summers and wet winters. Changes in winter rainfall are critical for regional socioeconomic development, but are difficult to simulate accurately1 and reconstruct on Quaternary timescales. This is partly because regional hydroclimate records that cover multiple glacial-interglacial cycles2,3 with different orbital geometries, global ice volume and atmospheric greenhouse gas concentrations are scarce. Moreover, the underlying mechanisms of change and their persistence remain unexplored. Here we show that, over the past 1.36 million years, wet winters in the northcentral Mediterranean tend to occur with high contrasts in local, seasonal insolation and a vigorous African summer monsoon. Our proxy time series from Lake Ohrid on the Balkan Peninsula, together with a 784,000-year transient climate model hindcast, suggest that increased sea surface temperatures amplify local cyclone development and refuel North Atlantic low-pressure systems that enter the Mediterranean during phases of low continental ice volume and high concentrations of atmospheric greenhouse gases. A comparison with modern reanalysis data shows that current drivers of the amount of rainfall in the Mediterranean share some similarities to those that drive the reconstructed increases in precipitation. Our data cover multiple insolation maxima and are therefore an important benchmark for testing climate model performance.


Assuntos
Clima , Chuva , Estações do Ano , África , Região do Mediterrâneo , Modelos Teóricos
2.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34400496

RESUMO

The sediment record from Lake Ohrid (Southwestern Balkans) represents the longest continuous lake archive in Europe, extending back to 1.36 Ma. We reconstruct the vegetation history based on pollen analysis of the DEEP core to reveal changes in vegetation cover and forest diversity during glacial-interglacial (G-IG) cycles and early basin development. The earliest lake phase saw a significantly different composition rich in relict tree taxa and few herbs. Subsequent establishment of a permanent steppic herb association around 1.2 Ma implies a threshold response to changes in moisture availability and temperature and gradual adjustment of the basin morphology. A change in the character of G-IG cycles during the Early-Middle Pleistocene Transition is reflected in the record by reorganization of the vegetation from obliquity- to eccentricity-paced cycles. Based on a quantitative analysis of tree taxa richness, the first large-scale decline in tree diversity occurred around 0.94 Ma. Subsequent variations in tree richness were largely driven by the amplitude and duration of G-IG cycles. Significant tree richness declines occurred in periods with abundant dry herb associations, pointing to aridity affecting tree population survival. Assessment of long-term legacy effects between global climate and regional vegetation change reveals a significant influence of cool interglacial conditions on subsequent glacial vegetation composition and diversity. This effect is contrary to observations at high latitudes, where glacial intensity is known to control subsequent interglacial vegetation, and the evidence demonstrates that the Lake Ohrid catchment functioned as a refugium for both thermophilous and temperate tree species.


Assuntos
Florestas , Sedimentos Geológicos , Camada de Gelo , Lagos , Pólen , Refúgio de Vida Selvagem , Biodiversidade , Mudança Climática , Região do Mediterrâneo , Dinâmica Populacional , Temperatura , Fatores de Tempo , Árvores/classificação , Árvores/fisiologia
3.
PLoS One ; 17(7): e0271548, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35839243

RESUMO

This study provides a high-resolution reconstruction of the vegetation of the Argive Plain (Peloponnese, Greece) covering 5000 years from the Early Bronze Age onwards. The well dated pollen record from ancient Lake Lerna has been interpreted in the light of archaeological and historical sources, climatic data from the same core and other regional proxies. Our results demonstrate a significant degree of human impact on the environments of the Argive Plain throughout the study period. During the Early Bronze Age evidence of a thermophilous vegetation is seen in the pollen record, representing the mixed deciduous oak woodland of the Peloponnesian uplands. The plain was mainly used for the cultivation of cereals, whereas local fen conditions prevailed at the coring site. Towards the end of this period an increasing water table is recorded and the fen turns into a lake, despite more arid conditions. In the Late Bronze Age, the presence of important palatial centres modified the landscape resulting in decrease of mixed deciduous oak woodland and increase in open land, partly used for grazing. Possibly, the human management produced a permanent hydrological change at Lake Lerna. From the Archaic period onwards the increasing human pressure in association with local drier conditions caused landscape instability, as attested by a dramatic alluvial event recorded in the Pinus curve at the end of the Hellenistic Age. Wet conditions coincided with Roman times and favoured a forest regeneration pattern in the area, at the same time as we see the most intensive olive cultivation in the pollen record. The establishment of an economic landscape primarily based on pastures is recorded in the Byzantine period and continues until modern times. Overgrazing and fires in combination with arid conditions likely caused degradation of the vegetation into garrigue, as seen in the area of the Argive Plain today.


Assuntos
Lagos , Pólen , Arqueologia , Florestas , Grécia , História Antiga , Humanos
5.
Sci Rep ; 9(1): 3116, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816341

RESUMO

Young rifts are shaped by combined tectonic and surface processes and climate, yet few records exist to evaluate the interplay of these processes over an extended period of early rift-basin development. Here, we present the longest and highest resolution record of sediment flux and paleoenvironmental changes when a young rift connects to the global oceans. New results from International Ocean Discovery Program (IODP) Expedition 381 in the Corinth Rift show 10s-100s of kyr cyclic variations in basin paleoenvironment as eustatic sea level fluctuated with respect to sills bounding this semi-isolated basin, and reveal substantial corresponding changes in the volume and character of sediment delivered into the rift. During interglacials, when the basin was marine, sedimentation rates were lower (excepting the Holocene), and bioturbation and organic carbon concentration higher. During glacials, the basin was isolated from the ocean, and sedimentation rates were higher (~2-7 times those in interglacials). We infer that reduced vegetation cover during glacials drove higher sediment flux from the rift flanks. These orbital-timescale changes in rate and type of basin infill will likely influence early rift sedimentary and faulting processes, potentially including syn-rift stratigraphy, sediment burial rates, and organic carbon flux and preservation on deep continental margins worldwide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA