Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 153(2): 503-512, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38344971

RESUMO

BACKGROUND: The immunogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines is variable in individuals with different inborn errors of immunity or acquired immune deficiencies and is yet unknown in people with idiopathic CD4 lymphopenia (ICL). OBJECTIVE: We sought to determine the immunogenicity of mRNA vaccines in patients with ICL with a broad range of CD4 T-cell counts. METHODS: Samples were collected from 25 patients with ICL and 23 age- and sex-matched healthy volunteers (HVs) after their second or third SARS-CoV-2 mRNA vaccine dose. Anti-spike and anti-receptor binding domain antibodies were measured. T-cell receptor sequencing and stimulation assays were performed to quantify SARS-CoV-2-specific T-cell responses. RESULTS: The median age of ICL participants was 51 years, and their median CD4 count was 150 cells/µL; 11 participants had CD4 counts ≤100 cells/µL. Anti-spike IgG antibody levels were greater in HVs than in patients with ICL after 2 and 3 doses of mRNA vaccine. There was no detectable significant difference, however, in anti-S IgG between HVs and participants with ICL and CD4 counts >100 cells/µL. The depth of spike-specific T-cell responses by T-cell receptor sequencing was lower in individuals with ICL. Activation-induced markers and cytokine production of spike-specific CD4 T cells in participants with ICL did not differ significantly compared with HVs after 2 or 3 vaccine doses. CONCLUSIONS: Patients with ICL and CD4 counts >100 cells/µL can mount vigorous humoral and cellular immune responses to SARS-CoV-2 vaccination; however, patients with more severe CD4 lymphopenia have blunted vaccine-induced immunity and may require additional vaccine doses and other risk mitigation strategies.


Assuntos
COVID-19 , Linfopenia , Humanos , Pessoa de Meia-Idade , Vacinas contra COVID-19 , Vacinas de mRNA , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação , Receptores de Antígenos de Linfócitos T , Imunidade , RNA Mensageiro , Anticorpos Antivirais
2.
bioRxiv ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39131331

RESUMO

A subset of people living with HIV (PLWH) can produce broadly neutralizing antibodies (bNAbs) against HIV, but the lymph node (LN) dynamics that promote the generation of these antibodies are poorly understood. Here, we explored LN-associated histological, immunological, and virological mechanisms of bNAb generation in a cohort of anti-retroviral therapy (ART)-naïve PLWH. We found that participants who produce bNAbs, termed neutralizers, have a superior LN-associated B cell follicle architecture compared with PLWH who do not. The latter was associated with a significantly higher in situ prevalence of Bcl-6hi follicular helper CD4 T cells (TFH), expressing a molecular program that favors their differentiation and stemness, and significantly reduced IL-10 follicular suppressor CD4 T cells. Furthermore, our data reveal possible molecular targets mediating TFH- B cell interactions in neutralizers. Together, we identify cellular and molecular mechanisms that contribute to the development of bNAbs in PLWH.

3.
Sci Transl Med ; 16(730): eadh9039, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38232141

RESUMO

The fusion peptide (FP) on the HIV-1 envelope (Env) trimer can be targeted by broadly neutralizing antibodies (bNAbs). Here, we evaluated the ability of a human FP-directed bNAb, VRC34.01, along with two vaccine-elicited anti-FP rhesus macaque mAbs, DFPH-a.15 and DF1W-a.01, to protect against simian-HIV (SHIV)BG505 challenge. VRC34.01 neutralized SHIVBG505 with a 50% inhibitory concentration (IC50) of 0.58 µg/ml, whereas DF1W-a.01 and DFPH-a.15 were 4- or 30-fold less potent, respectively. VRC34.01 was infused into four rhesus macaques at a dose of 10 mg/kg and four rhesus macaques at a dose of 2.5 mg/kg. The animals were intrarectally challenged 5 days later with SHIVBG505. In comparison with all 12 control animals that became infected, all four animals infused with VRC34.01 (10 mg/kg) and three out of four animals infused with VRC34.01 (2.5 mg/kg) remained uninfected. Because of the lower potency of DF1W-a.01 and DFPH-a.15 against SHIVBG505, we infused both Abs at a higher dose of 100 mg/kg into four rhesus macaques each, followed by SHIVBG505 challenge 5 days later. Three of four animals that received DF1W-a.01 were protected against infection, whereas all animals that received DFPH-a.15 were protected. Overall, the protective serum neutralization titers observed in these animals were similar to what has been observed for other bNAbs in similar SHIV infection models and in human clinical trials. In conclusion, FP-directed mAbs can thus provide dose-dependent in vivo protection against mucosal SHIV challenges, supporting the development of prophylactic vaccines targeting the HIV-1 Env FP.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Macaca mulatta , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV/uso terapêutico , Infecções por HIV/prevenção & controle , Anticorpos Monoclonais , Peptídeos , Anticorpos Neutralizantes
4.
bioRxiv ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39026699

RESUMO

Broadly neutralizing antibodies (bNAbs) have shown great promise for prevention and treatment of HIV infection. Breadth of bNAb neutralization, measured in vitro across panels of diverse viral isolates, is often used as a predictor of clinical potential. However, recent prevention studies demonstrate that the clinical efficacy of a broad and potent bNAb (VRC01) is undermined by neutralization resistance of circulating strains. Using HIV-infected humanized mice, we find that therapeutic efficacy of bNAbs delivered as Vectored ImmunoTherapy (VIT) is a function of both the fitness cost and resistance benefit of mutations that emerge during viral escape, which we term 'escapability'. Applying this mechanistic framework, we find that the sequence of the envelope V5-loop alters the resistance benefits of mutants that arise during escape, thereby impacting the therapeutic efficacy of VIT-mediated viral suppression. We also find that an emtricitabine-based antiretroviral drug regimen dramatically enhances the efficacy of VIT, by reducing the fitness of mutants along the escape path. Our findings demonstrate that bNAb escapability is a key determinant to consider in the rational design of antibody regimens with maximal efficacy and illustrates a tractable means of minimizing viral escape from existing bNAbs.

5.
NPJ Vaccines ; 9(1): 67, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553525

RESUMO

Ebola virus disease (EVD) is a filoviral infection caused by virus species of the Ebolavirus genus including Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV). We investigated the safety and immunogenicity of a heterologous prime-boost regimen involving a chimpanzee adenovirus 3 vectored Ebola vaccine [either monovalent (cAd3-EBOZ) or bivalent (cAd3-EBO)] prime followed by a recombinant modified vaccinia virus Ankara EBOV vaccine (MVA-EbolaZ) boost in two phase 1/1b randomized open-label clinical trials in healthy adults in the United States (US) and Uganda (UG). Trial US (NCT02408913) enrolled 140 participants, including 26 EVD vaccine-naïve and 114 cAd3-Ebola-experienced participants (April-November 2015). Trial UG (NCT02354404) enrolled 90 participants, including 60 EVD vaccine-naïve and 30 DNA Ebola vaccine-experienced participants (February-April 2015). All tested vaccines and regimens were safe and well tolerated with no serious adverse events reported related to study products. Solicited local and systemic reactogenicity was mostly mild to moderate in severity. The heterologous prime-boost regimen was immunogenic, including induction of durable antibody responses which peaked as early as two weeks and persisted up to one year after each vaccination. Different prime-boost intervals impacted the magnitude of humoral and cellular immune responses. The results from these studies demonstrate promising implications for use of these vaccines in both prophylactic and outbreak settings.

6.
bioRxiv ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38659969

RESUMO

Multisystem Inflammatory Syndrome in Children (MIS-C) is a severe complication of SARS-CoV-2 infection characterized by multi-organ involvement and inflammation. Testing of cellular function ex vivo to understand the aberrant immune response in MIS-C is limited. Despite strong antibody production in MIS-C, SARS-CoV-2 nucleic acid testing can remain positive for 4-6 weeks after infection. Therefore, we hypothesized that dysfunctional cell-mediated antibody responses downstream of antibody production may be responsible for delayed clearance of viral products in MIS-C. In MIS-C, monocytes were hyperfunctional for phagocytosis and cytokine production, while natural killer (NK) cells were hypofunctional for both killing and cytokine production. The decreased NK cell cytotoxicity correlated with an NK exhaustion marker signature and systemic IL-6 levels. Potentially providing a therapeutic option, cellular engagers of CD16 and SARS-CoV-2 proteins were found to rescue NK cell function in vitro. Together, our results reveal dysregulation in antibody-mediated cellular responses unique to MIS-C that likely contribute to the immune pathology of this disease.

7.
iScience ; 27(2): 108877, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38318357

RESUMO

Soluble 'SOSIP'-stabilized HIV-1 envelope glycoprotein (Env) trimers elicit dominant antibody responses targeting their glycan-free base regions, potentially diminishing neutralizing responses. Previously, using a nonhuman primate model, we demonstrated that priming with fusion peptide (FP)-carrier conjugate immunogens followed by boosting with Env trimers reduced the anti-base response. Further, we demonstrated that longer immunization intervals further reduced anti-base responses and increased neutralization breadth. Here, we demonstrate that long trimer-boosting intervals, but not long FP immunization intervals, reduce the anti-base response. Additionally, we identify that FP priming before trimer immunization enhances antibody avidity to the Env trimer. We also establish that adjuvants Matrix M and Adjuplex further reduce anti-base responses and increase neutralizing titers. FP priming, long trimer-immunization interval, and an appropriate adjuvant can thus reduce anti-base antibody responses and improve Env-directed vaccine outcomes.

8.
Pharmaceutics ; 16(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38794258

RESUMO

Monoclonal antibodies are commonly engineered with an introduction of Met428Leu and Asn434Ser, known as the LS mutation, in the fragment crystallizable region to improve pharmacokinetic profiles. The LS mutation delays antibody clearance by enhancing binding affinity to the neonatal fragment crystallizable receptor found on endothelial cells. To characterize the LS mutation for monoclonal antibodies targeting HIV, we compared pharmacokinetic parameters between parental versus LS variants for five pairs of anti-HIV immunoglobin G1 monoclonal antibodies (VRC01/LS/VRC07-523LS, 3BNC117/LS, PGDM1400/LS PGT121/LS, 10-1074/LS), analyzing data from 16 clinical trials of 583 participants without HIV. We described serum concentrations of these monoclonal antibodies following intravenous or subcutaneous administration by an open two-compartment disposition, with first-order elimination from the central compartment using non-linear mixed effects pharmacokinetic models. We compared estimated pharmacokinetic parameters using the targeted maximum likelihood estimation method, accounting for participant differences. We observed lower clearance rate, central volume, and peripheral volume of distribution for all LS variants compared to parental monoclonal antibodies. LS monoclonal antibodies showed several improvements in pharmacokinetic parameters, including increases in the elimination half-life by 2.7- to 4.1-fold, the dose-normalized area-under-the-curve by 4.1- to 9.5-fold, and the predicted concentration at 4 weeks post-administration by 3.4- to 7.6-fold. Results suggest a favorable pharmacokinetic profile of LS variants regardless of HIV epitope specificity. Insights support lower dosages and/or less frequent dosing of LS variants to achieve similar levels of antibody exposure in future clinical applications.

9.
NPJ Vaccines ; 9(1): 58, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467663

RESUMO

Vaccine priming immunogens that activate germline precursors for broadly neutralizing antibodies (bnAbs) have promise for development of precision vaccines against major human pathogens. In a clinical trial of the eOD-GT8 60mer germline-targeting immunogen, higher frequencies of vaccine-induced VRC01-class bnAb-precursor B cells were observed in the high dose compared to the low dose group. Through immunoglobulin heavy chain variable (IGHV) genotyping, statistical modeling, quantification of IGHV1-2 allele usage and B cell frequencies in the naive repertoire for each trial participant, and antibody affinity analyses, we found that the difference between dose groups in VRC01-class response frequency was best explained by IGHV1-2 genotype rather than dose and was most likely due to differences in IGHV1-2 B cell frequencies for different genotypes. The results demonstrate the need to define population-level immunoglobulin allelic variations when designing germline-targeting immunogens and evaluating them in clinical trials.

10.
JCI Insight ; 9(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587079

RESUMO

BACKGROUNDBroadly neutralizing monoclonal antibodies (bNAbs) represent a promising strategy for HIV-1 immunoprophylaxis and treatment. 10E8VLS and VRC07-523LS are bNAbs that target the highly conserved membrane-proximal external region (MPER) and the CD4-binding site of the HIV-1 viral envelope glycoprotein, respectively.METHODSIn this phase 1, open-label trial, we evaluated the safety and pharmacokinetics of 5 mg/kg 10E8VLS administered alone, or concurrently with 5 mg/kg VRC07-523LS, via s.c. injection to healthy non-HIV-infected individuals.RESULTSEight participants received either 10E8VLS alone (n = 6) or 10E8VLS and VRC07-523LS in combination (n = 2). Five (n = 5 of 8, 62.5%) participants who received 10E8VLS experienced moderate local reactogenicity, and 1 participant (n = 1/8, 12.5%) experienced severe local reactogenicity. Further trial enrollment was stopped, and no participant received repeat dosing. All local reactogenicity resolved without sequelae. 10E8VLS retained its neutralizing capacity, and no functional anti-drug antibodies were detected; however, a serum t1/2 of 8.1 days was shorter than expected. Therefore, the trial was voluntarily stopped per sponsor decision (Vaccine Research Center, National Institute of Allergy and Infectious Diseases [NIAID], NIH). Mechanistic studies performed to investigate the underlying reason for the reactogenicity suggest that multiple mechanisms may have contributed, including antibody aggregation and upregulation of local inflammatory markers.CONCLUSION10E8VLS resulted in unexpected reactogenicity and a shorter t1/2 in comparison with previously tested bNAbs. These studies may facilitate identification of nonreactogenic second-generation MPER-targeting bNAbs, which could be an effective strategy for HIV-1 immunoprophylaxis and treatment.TRIAL REGISTRATIONClinicaltrials.gov, accession no. NCT03565315.FUNDINGDivision of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Anticorpos Anti-HIV , Anticorpos Amplamente Neutralizantes/farmacologia , Anticorpos Monoclonais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA