Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Infect Immun ; 87(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30670556

RESUMO

Iatrogenic hookworm therapy shows promise for treating disorders that result from a dysregulated immune system, including inflammatory bowel disease (IBD). Using a murine model of trinitrobenzenesulfonic acid-induced colitis and human peripheral blood mononuclear cells, we demonstrated that low-molecular-weight metabolites derived from both somatic extracts (LMWM-SE) and excretory-secretory products (LMWM-ESP) of the hookworm, Ancylostoma caninum, display anti-inflammatory properties. Administration to mice of LMWM-ESP as well as sequentially extracted fractions of LMWM-SE using both methanol (SE-MeOH) and hexane-dichloromethane-acetonitrile (SE-HDA) resulted in significant protection against T cell-mediated immunopathology, clinical signs of colitis, and impaired histological colon architecture. To assess bioactivity in human cells, we stimulated primary human leukocytes with lipopolysaccharide in the presence of hookworm extracts and showed that SE-HDA suppressed ex vivo production of inflammatory cytokines. Gas chromatography-mass spectrometry (MS) and liquid chromatography-MS analyses revealed the presence of 46 polar metabolites, 22 fatty acids, and five short-chain fatty acids (SCFAs) in the LMWM-SE fraction and 29 polar metabolites, 13 fatty acids, and six SCFAs in the LMWM-ESP fraction. Several of these small metabolites, notably the SCFAs, have been previously reported to have anti-inflammatory properties in various disease settings, including IBD. This is the first report showing that hookworms secrete small molecules with both ex vivo and in vivo anti-inflammatory bioactivity, and this warrants further exploration as a novel approach to the development of anti-inflammatory drugs inspired by coevolution of gut-dwelling hookworms with their vertebrate hosts.


Assuntos
Ancylostoma/química , Anti-Inflamatórios/administração & dosagem , Colite/terapia , Citocinas/imunologia , Leucócitos Mononucleares/imunologia , Ancylostoma/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Terapia Biológica , Colite/genética , Colite/imunologia , Citocinas/genética , Modelos Animais de Doenças , Ácidos Graxos/administração & dosagem , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
2.
Metabolomics ; 15(7): 101, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31254203

RESUMO

INTRODUCTION: Soil-transmitted helminths infect billions of people, livestock and companion animals worldwide, and chronic infections with these nematodes represent a major health burden in many developing countries. On the other hand, complete elimination of parasitic helminths and other infectious pathogens has been implicated with rising rates of autoimmune and allergic disorders in developed countries. Given the enormous health impact of these parasites, it is surprising how little is known about the non-protein small metabolites of the excretory-secretory products (ESP), including their composition and pharmacological properties. OBJECTIVES: We sought proof-of-concept that Nippostrongylus brasiliensis and Trichuris muris, rodent models of two of the most important human soil-transmitted helminths, secrete small metabolites and that some of these metabolites may have specific pharmacological functions. METHODS: N. brasiliensis and T. muris ESP were collected from adult worms and filtered using a 10 kDa cut-off membrane to produce excretory-secretory metabolites (ESM). The ESM were analysed using targeted gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry for polar and non-polar small metabolites. RESULTS: ESM from both N. brasiliensis and T. muris contained small molecules. A total of 54 small molecules (38 polar metabolites and 16 fatty acids) were identified, 36 known polar metabolites from N. brasiliensis and 35 from T. muris. A literature review of the identified compounds revealed that 17 of them have various demonstrated pharmacological activities. CONCLUSION: N. brasiliensis and T. muris secrete polar and non-polar small molecules with as many as 17 metabolites known to exhibit various pharmacological activities.


Assuntos
Ancylostomatoidea/metabolismo , Metaboloma , Metabolômica/métodos , Trichuris/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Ácidos Graxos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas , Camundongos , Modelos Animais , Análise de Componente Principal , Ratos , Ratos Sprague-Dawley
3.
Metabolomics ; 15(8): 108, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31367897

RESUMO

INTRODUCTION: Zinc is a heavy metal commonly detected in urban estuaries around Australia. Boscalid is a fungicide found in estuaries, both in water and sediment, it enters the system predominantly through agricultural run-off. Zinc is persistent while boscalid breaks down, with a half-life of 108 days. Both contaminants are widely distributed and their effects on ecosystems are not well understood. OBJECTIVES: The aim of this study was to determine the metabolite changes in Simplisetia aequisetis (an estuarine polychaete) following laboratory exposure to a sub-lethal concentration of zinc or boscalid over a 2-week period. METHODS: Individuals were collected at six time points over a 2-week period. Whole polychaete metabolites were extracted and quantified using a multi-platform approach. Polar metabolites were detected using a semi-targeted GC-MS analysis and amine containing compounds were analysed using a targeted LC-MS analysis. Total lipid energy content was also analysed for Simplisetia aequisetis. RESULTS: The pathways that responded to zinc and boscalid exposure were alanine, aspartate and glutamate metabolism (AAG); glycine, serine and threonine metabolism (GST) and metabolites associated with the tricarboxylic acid cycle (TCA). Results showed that changes in total abundance of some metabolites could be detected as early as 24-h exposure. Changes were detected in the metabolites before commonly used total lipid energy assays identified effects. CONCLUSION: A multi-platform approach provided a holistic overview of the metabolomic response to contaminants in polychaetes. This approach shows promise to be used in biomonitoring programs to provide early diagnostic indicators of contamination and exposure.


Assuntos
Compostos de Bifenilo/farmacologia , Cloretos/farmacologia , Metabolômica , Niacinamida/análogos & derivados , Poliquetos/efeitos dos fármacos , Poliquetos/metabolismo , Compostos de Zinco/farmacologia , Animais , Compostos de Bifenilo/administração & dosagem , Cloretos/administração & dosagem , Niacinamida/administração & dosagem , Niacinamida/farmacologia , Fatores de Tempo , Compostos de Zinco/administração & dosagem
4.
J Lipid Res ; 59(7): 1190-1204, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29724782

RESUMO

The complex cell envelopes of Corynebacterineae contribute to the virulence of pathogenic species (such as Mycobacterium tuberculosis and Corynebacterium diphtheriae) and capacity of nonpathogenic species (such as Corynebacterium glutamicum) to grow in diverse niches. The Corynebacterineae cell envelope comprises an asymmetric outer membrane that overlays the arabinogalactan-peptidoglycan complex and the inner cell membrane. Dissection of the lipid composition of the inner and outer membrane fractions is important for understanding the biogenesis of this multilaminate wall structure. Here, we have undertaken the first high-resolution analysis of C. glutamicum inner and outer membrane lipids. We identified 28 lipid (sub)classes (>233 molecular species), including new subclasses of acylated/acetylated trehalose mono/dicorynomycolic acids, using high-resolution LC/MS/MS coupled with mass spectral library searches in MS-DIAL. All lipid subclasses exhibited polarized distributions across the inner and outer membrane fractions generated by differential solvent extraction. Strikingly, deletion of the TmaT protein, which is required for transport of trehalose corynomycolates across the inner membrane, led to the accumulation of triacylglycerols in the inner membrane and to suppressed synthesis of phosphatidylglycerol and alanylated lipids. These analyses indicate unanticipated connectivity in the synthesis and/or transport of different lipid classes in C. glutamicum.


Assuntos
Membrana Celular/metabolismo , Corynebacterium glutamicum/citologia , Metabolismo dos Lipídeos , Espectrometria de Massas em Tandem , Corynebacterium glutamicum/genética , Mutação
5.
Metabolomics ; 14(11): 152, 2018 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-30830421

RESUMO

BACKGROUND: Metabolomics aims to identify the changes in endogenous metabolites of biological systems in response to intrinsic and extrinsic factors. This is accomplished through untargeted, semi-targeted and targeted based approaches. Untargeted and semi-targeted methods are typically applied in hypothesis-generating investigations (aimed at measuring as many metabolites as possible), while targeted approaches analyze a relatively smaller subset of biochemically important and relevant metabolites. Regardless of approach, it is well recognized amongst the metabolomics community that gas chromatography-mass spectrometry (GC-MS) is one of the most efficient, reproducible and well used analytical platforms for metabolomics research. This is due to the robust, reproducible and selective nature of the technique, as well as the large number of well-established libraries of both commercial and 'in house' metabolite databases available. AIM OF REVIEW: This review provides an overview of developments in GC-MS based metabolomics applications, with a focus on sample preparation and preservation techniques. A number of chemical derivatization (in-time, in-liner, offline and microwave assisted) techniques are also discussed. Electron impact ionization and a summary of alternate mass analyzers are highlighted, along with a number of recently reported new GC columns suited for metabolomics. Lastly, multidimensional GC-MS and its application in environmental and biomedical research is presented, along with the importance of bioinformatics. KEY SCIENTIFIC CONCEPTS OF REVIEW: The purpose of this review is to both highlight and provide an update on GC-MS analytical techniques that are common in metabolomics studies. Specific emphasis is given to the key steps within the GC-MS workflow that those new to this field need to be aware of and the common pitfalls that should be looked out for when starting in this area.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Animais , Cromatografia Gasosa-Espectrometria de Massas/normas , Humanos , Metabolômica/normas
6.
Metabolomics ; 14(10): 130, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30830461

RESUMO

BACKGROUND: Cord blood lipids are potential disease biomarkers. We aimed to determine if their concentrations were affected by delayed blood processing. METHOD: Refrigerated cord blood from six healthy newborns was centrifuged every 12 h for 4 days. Plasma lipids were analysed by liquid chromatography/mass spectroscopy. RESULTS: Of 262 lipids identified, only eight varied significantly over time. These comprised three dihexosylceramides, two phosphatidylserines and two phosphatidylethanolamines whose relative concentrations increased and one sphingomyelin that decreased. CONCLUSION: Delay in separation of plasma from refrigerated cord blood has minimal effect overall on the plasma lipidome.


Assuntos
Sangue Fetal/química , Lipídeos/sangue , Lipídeos/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Humanos , Recém-Nascido , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
7.
Biometals ; 29(1): 1-13, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26553050

RESUMO

Bioinorganic natural product chemistry is a relatively unexplored but rapidly developing field with enormous potential for applications in biology, biotechnology (especially in regards to nanomaterial development, synthesis and environmental cleanup) and biomedicine. In this review the occurrence of metals and metalloids in natural products and their synthetic derivatives are reviewed. A broad overview of the area is provided followed by a discussion on the more common metals and metalloids found in natural sources, and an overview of the requirements for future research. Special attention is given to metal hyperaccumulating plants and their use in chemical synthesis and bioremediation, as well as the potential uses of metals and metalloids as therapeutic agents. The potential future applications and development in the field are also discussed.


Assuntos
Produtos Biológicos/química , Biotecnologia , Metaloides/química , Metais/química , Biodegradação Ambiental , Tecnologia Biomédica , Humanos
8.
Int J Mol Sci ; 18(1)2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-28025547

RESUMO

The application of metabolomics to biological samples has been a key focus in systems biology research, which is aimed at the development of rapid diagnostic methods and the creation of personalized medicine. More recently, there has been a strong focus towards this approach applied to non-invasively acquired samples, such as saliva and exhaled breath. The analysis of these biological samples, in conjunction with other sample types and traditional diagnostic tests, has resulted in faster and more reliable characterization of a range of health disorders and diseases. As the sampling process involved in collecting exhaled breath and saliva is non-intrusive as well as comparatively low-cost and uses a series of widely accepted methods, it provides researchers with easy access to the metabolites secreted by the human body. Owing to its accuracy and rapid nature, metabolomic analysis of saliva and breath (known as salivaomics and breathomics, respectively) is a rapidly growing field and has shown potential to be effective in detecting and diagnosing the early stages of numerous diseases and infections in preclinical studies. This review discusses the various collection and analyses methods currently applied in two of the least used non-invasive sample types in metabolomics, specifically their application in salivaomics and breathomics research. Some of the salient research completed in this field to date is also assessed and discussed in order to provide a basis to advocate their use and possible future scientific directions.


Assuntos
Biomarcadores/análise , Expiração , Metaboloma , Técnicas de Diagnóstico Molecular/métodos , Saliva/química , Animais , Cromatografia/métodos , Humanos , Espectrometria de Massas/métodos
9.
J Chromatogr A ; 1713: 464522, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38041975

RESUMO

Microsampling allows the collection of blood samples using a method which is inexpensive, simple and minimally-invasive, without the need for specially-trained medical staff. Analysis of whole blood provides a more holistic understanding of per- and polyfluoroalkyl substances (PFAS) body burden. Capillary action microsamplers (Trajan hemaPEN®) allow the controlled collection of whole blood as dried blood spots (DBS) (four 2.74 µL ± 5 %). The quantification of 75 PFAS from DBS was evaluated by comparing five common extraction techniques. Spiked blood (5 ng/mL PFAS) was extracted by protein precipitation (centrifuged; filtered), acid-base liquid-liquid extraction, trypsin protease digestion, and weak anion exchange (WAX) solid-phase extraction with analysis by high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Filtered protein precipitation was the most effective extraction method, recovering 72 of the 75 PFAS within 70 to 130 % with method reporting limit (MRL) for PFOS of 0.17 ng/L and ranging between 0.05 ng/mL and 0.34 ng/mL for all other PFAS. The optimised method was applied to human blood samples to examine Inter- (n = 7) and intra-day (n = 5) PFAS blood levels in one individual. Sixteen PFAS were detected with an overall Σ16PFAS mean = 6.3 (range = 5.7-7.0) ng/mL and perfluorooctane sulfonate (branched and linear isomers, ΣPFOS) = 3.3 (2.8-3.7) ng/mL being the dominant PFAS present. To the authors knowledge, this minimally invasive self-sampling protocol is the most extensive method for PFAS in blood reported and could be a useful tool for large scale human biomonitoring studies.


Assuntos
Fluorocarbonos , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Teste em Amostras de Sangue Seco/métodos , Cromatografia Líquida de Alta Pressão/métodos
10.
Commun Biol ; 3(1): 518, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948809

RESUMO

Competition between viruses and Wolbachia for host lipids is a proposed mechanism of Wolbachia-mediated virus blocking in insects. Yet, the metabolomic interaction between virus and symbiont within the mosquito has not been clearly defined. We compare the lipid profiles of Aedes aegypti mosquitoes bearing mono- or dual-infections of the Wolbachia wMel strain and dengue virus serotype 3 (DENV3). We found metabolic signatures of infection-induced intracellular events but little evidence to support direct competition between Wolbachia and virus for host lipids. Lipid profiles of dual-infected mosquitoes resemble those of DENV3 mono-infected mosquitoes, suggesting virus-driven modulation dominates over that of Wolbachia. Interestingly, knockdown of key metabolic enzymes suggests cardiolipins are host factors for DENV3 and Wolbachia replication. These findings define the Wolbachia-DENV3 metabolic interaction as indirectly antagonistic, rather than directly competitive, and reveal new research avenues with respect to mosquito × virus interactions at the molecular level.


Assuntos
Aedes/metabolismo , Vírus da Dengue/genética , Metabolismo dos Lipídeos/genética , Wolbachia/genética , Aedes/microbiologia , Aedes/patogenicidade , Aedes/virologia , Animais , Dengue/genética , Dengue/metabolismo , Dengue/microbiologia , Dengue/virologia , Vírus da Dengue/metabolismo , Vírus da Dengue/patogenicidade , Humanos , Insetos Vetores/genética , Insetos Vetores/microbiologia , Insetos Vetores/virologia , Controle Biológico de Vetores , Replicação Viral/genética , Wolbachia/metabolismo , Wolbachia/patogenicidade
11.
Metabolites ; 10(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935843

RESUMO

This exploratory study aims to investigate the health of sand flathead (Platycephalus bassensis) sampled from five sites in Port Phillip Bay, Australia using gas chromatography-mass spectrometry (GC-MS) metabolomics approaches. Three of the sites were the recipients of industrial, agricultural, and urban run-off and were considered urban sites, while the remaining two sites were remote from contaminant inputs, and hence classed as rural sites. Morphological parameters as well as polar and free fatty acid metabolites were used to investigate inter-site differences in fish health. Significant differences in liver somatic index (LSI) and metabolite abundance were observed between the urban and rural sites. Differences included higher LSI, an increased abundance of amino acids and energy metabolites, and reduced abundance of free fatty acids at the urban sites compared to the rural sites. These differences might be related to the additional energy requirements needed to cope with low-level contaminant exposure through energy demanding processes such as detoxification and antioxidant responses as well as differences in diet between the sites. In this study, we demonstrate that metabolomics approaches can offer a greater level of sensitivity compared to traditional parameters such as physiological parameters or biochemical markers of fish health, most of which showed no or little inter-site differences in the present study. Moreover, the metabolite responses are more informative than traditional biomarkers in terms of biological significance as disturbances in specific metabolic pathways can be identified.

12.
Metabolites ; 9(4)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003499

RESUMO

The use of multiple omics techniques (i.e., genomics, transcriptomics, proteomics, and metabolomics) is becoming increasingly popular in all facets of life science. Omics techniques provide a more holistic molecular perspective of studied biological systems compared to traditional approaches. However, due to their inherent data differences, integrating multiple omics platforms remains an ongoing challenge for many researchers. As metabolites represent the downstream products of multiple interactions between genes, transcripts, and proteins, metabolomics, the tools and approaches routinely used in this field could assist with the integration of these complex multi-omics data sets. The question is, how? Here we provide some answers (in terms of methods, software tools and databases) along with a variety of recommendations and a list of continuing challenges as identified during a peer session on multi-omics integration that was held at the recent 'Australian and New Zealand Metabolomics Conference' (ANZMET 2018) in Auckland, New Zealand (Sept. 2018). We envisage that this document will serve as a guide to metabolomics researchers and other members of the community wishing to perform multi-omics studies. We also believe that these ideas may allow the full promise of integrated multi-omics research and, ultimately, of systems biology to be realized.

13.
Methods Mol Biol ; 1918: 149-164, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30580406

RESUMO

Metabolomics is one of the more recently developed "omics" that measures low molecular weight (typically < 1500 Da) compounds in biological samples. Metabolomics has been widely explored in environmental, clinical, and industrial biotechnology applications. However, its application to the area of food safety has been limited but preliminary work has demonstrated its value. This chapter describes an untargeted (nontargeted) metabolomics workflow using gas chromatography coupled to mass spectrometry (GC-MS) for characterizing three globally important foodborne pathogens, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica, from selective enrichment liquid culture media. The workflow involves a detailed description of food spiking experiments followed by procedures for extraction of polar metabolites from media, analyzing the extracts using GC-MS and, finally, chemometric data analysis using the software "SIMCA" to identify potential pathogen-specific biomarkers.


Assuntos
Biomarcadores , Doenças Transmitidas por Alimentos/etiologia , Metabolômica/métodos , Interpretação Estatística de Dados , Microbiologia de Alimentos/métodos , Doenças Transmitidas por Alimentos/diagnóstico , Cromatografia Gasosa-Espectrometria de Massas , Humanos
14.
Metabolites ; 9(10)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618973

RESUMO

Environmental pollutants such as heavy metals and fungicides pose a serious threat to waterways worldwide. Toxicological assessment of such contaminants is usually conducted using single compound exposures, as it is challenging to understand the effect of mixtures on biota using standard ecotoxicological methods; whereas complex chemical mixtures are more probable in ecosystems. This study exposed Simplisetia aequisetis (an estuarine annelid) to sublethal concentrations of a metal (zinc) and a fungicide (boscalid), both singly and as a mixture, for two weeks. Metabolomic analysis via gas and liquid chromatography-mass spectrometry was used to measure the stress response(s) of the organism following exposure. A total of 75 metabolites, including compounds contributing to the tricarboxylic acid cycle, the urea cycle, and a number of other pathways, were identified and quantified. The multiplatform approach identified distinct metabolomic responses to each compound that differed depending on whether the substance was presented singly or as a mixture, indicating a possible antagonistic effect. The study demonstrates that metabolomics is able to elucidate the effects and mode of action of contaminants and can identify possible outcomes faster than standard ecotoxicological endpoints, such as growth and reproduction. Metabolomics therefore has a possible future role in biomonitoring and ecosystem health assessments.

15.
Front Microbiol ; 9: 3132, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619201

RESUMO

Considering the short shelf-life of certain food products such as red meat, there is a need for rapid and cost-effective methods for pathogen detection. Routine pathogen testing in food laboratories mostly relies on conventional microbiological methods which involve the use of multiple selective culture media and long incubation periods, often taking up to 7 days for confirmed identifications. The current study investigated the application of omics-based approaches, proteomics using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-ToF MS) and metabolomics using gas chromatography-mass spectrometry (GC-MS), for detection of three red meat pathogens - Listeria monocytogenes, Salmonella enterica and Escherichia coli O157:H7. Species-level identification was achieved within 18 h for S. enterica and E. coli O157:H7 and 30 h for L. monocytogenes using MALDI-ToF MS analysis. For the metabolomics approach, metabolites were extracted directly from selective enrichment broth samples containing spiked meat samples (obviating the need for culturing on solid media) and data obtained using GC-MS were analyzed using chemometric methods. Putative biomarkers relating to L. monocytogenes, S. enterica and E. coli O157:H7 were observed within 24, 18, and 12 h, respectively, of inoculating meat samples. Many of the identified metabolites were sugars, fatty acids, amino acids, nucleosides and organic acids. Secondary metabolites such as cadaverine, hydroxymelatonin and 3,4-dihydroxymadelic acid were also observed. The results obtained in this study will assist in the future development of rapid diagnostic tests for these important foodborne pathogens.

16.
Nat Commun ; 9(1): 3728, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30214011

RESUMO

Anti-microbial signaling pathways are normally triggered by innate immune receptors when detecting pathogenic microbes to provide protective immunity. Here we show that the inflammasome sensor Nlrp1 aggravates DSS-induced experimental mouse colitis by limiting beneficial, butyrate-producing Clostridiales in the gut. The colitis-protective effects of Nlrp1 deficiency are thus reversed by vancomycin treatment, but recapitulated with butyrate supplementation in wild-type mice. Moreover, an activating mutation in Nlrp1a increases IL-18 and IFNγ production, and decreases colonic butyrate to exacerbate colitis. We also show that, in patients with ulcerative colitis, increased NLRP1 in inflamed regions of the colon is associated with increased IFN-γ. In this context, NLRP1, IL-18 or IFN-γ expression negatively correlates with the abundance of Clostridiales in human rectal mucosal biopsies. Our data identify the NLRP1 inflammasome to be a key negative regulator of protective, butyrate-producing commensals, which therefore promotes inflammatory bowel disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Butiratos/metabolismo , Clostridiales , Doenças Inflamatórias Intestinais/metabolismo , Interferon gama/metabolismo , Interleucina-18/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Reguladoras de Apoptose/genética , Colite/metabolismo , Colo/patologia , Feminino , Microbioma Gastrointestinal , Deleção de Genes , Humanos , Inflamassomos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas NLR , Reto/metabolismo , Transdução de Sinais , Linfócitos T/citologia , Vancomicina/farmacologia
17.
Metabolites ; 7(4)2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29258276

RESUMO

Metabolomic techniques are powerful tools for investigating organism-environment interactions. Metabolite profiles have the potential to identify exposure or toxicity before populations are disrupted and can provide useful information for environmental assessment. However, under complex environmental scenarios, metabolomic responses to exposure can be distorted by background and/or organismal variation. In the current study, we use LC-MS (liquid chromatography-mass spectrometry) and GC-MS (gas chromatography-mass spectrometry) to measure metabolites of the midge Procladius villosimanus inhabiting 21 urban wetlands. These metabolites were tested against common sediment contaminants using random forest models and metabolite enrichment analysis. Sediment contaminant concentrations in the field correlated with several P. villosimanus metabolites despite natural environmental and organismal variation. Furthermore, enrichment analysis indicated that metabolite sets implicated in stress responses were enriched, pointing to specific cellular functions affected by exposure. Methionine metabolism, sugar metabolism and glycerolipid metabolism associated with total petroleum hydrocarbon and metal concentrations, while mitochondrial electron transport and urea cycle sets associated only with bifenthrin. These results demonstrate the potential for metabolomics approaches to provide useful information in field-based environmental assessments.

18.
Metabolites ; 6(4)2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27983674

RESUMO

Although significant advances have been made in recent years, the structural elucidation of small molecules continues to remain a challenging issue for metabolite profiling. Many metabolomic studies feature unknown compounds; sometimes even in the list of features identified as "statistically significant" in the study. Such metabolic "dark matter" means that much of the potential information collected by metabolomics studies is lost. Accurate structure elucidation allows researchers to identify these compounds. This in turn, facilitates downstream metabolite pathway analysis, and a better understanding of the underlying biology of the system under investigation. This review covers a range of methods for the structural elucidation of individual compounds, including those based on gas and liquid chromatography hyphenated to mass spectrometry, single and multi-dimensional nuclear magnetic resonance spectroscopy, and high-resolution mass spectrometry and includes discussion of data standardization. Future perspectives in structure elucidation are also discussed; with a focus on the potential development of instruments and techniques, in both nuclear magnetic resonance spectroscopy and mass spectrometry that, may help solve some of the current issues that are hampering the complete identification of metabolite structure and function.

19.
Metallomics ; 7(1): 29-38, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25047028

RESUMO

Metabolomics may be defined as the comprehensive quantitative and/or qualitative analysis of all metabolites present in a bio-fluid, cell, tissue, or organism. It is essentially the study of biochemical phenotypes (or metabotypes). Metabolic profiles are context dependent, and vary in response to a variety of factors including environment and environmental stimuli, health status, disease and a myriad of other factors; as such, metabolomics has been applied to a wide range of fields and has been increasingly utilised to the study of the roles played by metals in a range of biological systems as well as, encouragingly, in understanding the underlying biochemical mechanisms. The role of metals (and metalloids) in biological organisms is complex and the majority of studies in this area have been performed in plants but the fields of natural product chemistry, human health and even bacterial corrosion of water distribution systems have been investigated using this technique. In this review some of the novel approaches in which the metabolomics toolbox has been used to unravel the roles of metals and metalloids in a range of biological systems are discussed and suggestions made for future research.


Assuntos
Metabolômica , Metaloides , Metais , Animais , Humanos , Metaloides/análise , Metaloides/metabolismo , Metais/análise , Metais/metabolismo , Camundongos , Plantas
20.
Artigo em Inglês | MEDLINE | ID: mdl-24674937

RESUMO

Water supply biofilms have the potential to harbour waterborne diseases, accelerate corrosion, and contribute to the formation of tuberculation in metallic pipes. One particular species of bacteria known to be found in the water supply networks is Pseudomonas sp., with the presence of Pseudomonas putida being isolated to iron pipe tubercles. Current methods for detecting and analysis pipe biofilms are time consuming and expensive. The application of metabolomics techniques could provide an alternative method for assessing biofilm risk more efficiently based on bacterial activity. As such, this paper investigates the application of metabolomic techniques and provides a proof-of-concept application using liquid chromatography coupled with time-of-flight mass spectrometry (LC-ToF-MS) to three biologically independent P. putida samples, across five different growth conditions exposed to solid and soluble iron (Fe). Analysis of the samples in +ESI and -ESI mode yielded 887 and 1789 metabolite features, respectively. Chemometric analysis of the +ESI and -ESI data identified 34 and 39 significant metabolite features, respectively, where features were considered significant if the fold change was greater than 2 and obtained a p-value less than 0.05. Metabolite features were subsequently identified according to the Metabolomics Standard Initiative (MSI) Chemical Analysis Workgroup using analytical standards and standard online LC-MS databases. Possible markers for P. putida growth, with and without being exposed to solid and soluble Fe, were identified from a diverse range of different chemical classes of metabolites including nucleobases, nucleosides, dipeptides, tripeptides, amino acids, fatty acids, sugars, and phospholipids.


Assuntos
Cromatografia Líquida/métodos , Água Potável/microbiologia , Metabolômica/métodos , Pseudomonas putida/química , Pseudomonas putida/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Biofilmes , Análise dos Mínimos Quadrados , Pseudomonas putida/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA