Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Small ; 20(8): e2306334, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37817372

RESUMO

While a multitude of studies have appeared touting the use of molecules as electronic components, the design of molecular switches is crucial for the next steps in molecular electronics. In this work, single-molecule devices incorporating spiropyrans, made using break junction techniques, are described. Linear spiropyrans with electrode-contacting groups linked by alkynyl spacers to both the indoline and chromenone moieties have previously provided very low conductance values, and removing the alkynyl spacer has resulted in a total loss of conductance. An orthogonal T-shaped approach to single-molecule junctions incorporating spiropyran moieties in which the conducting pathway lies orthogonal to the molecule backbone is described and characterized. This approach has provided singlemolecule conductance features with good correlation to molecular length. Additional higher conducting states are accessible using switching induced by UV light or protonation. Theoretical modeling demonstrates that upon (photo)chemical isomerization to the merocyanine, two cooperating phenomena increase conductance: release of steric hindrance allows the conductance pathway to become more planar (raising the mid-bandgap transmission) and a bound state introduces sharp interference near the Fermi level of the electrodes similarly responding to the change in state. This design step paves the way for future use of spiropyrans in single-molecule devices and electrosteric switches.

2.
Inorg Chem ; 62(31): 12283-12297, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37545356

RESUMO

To study the switching properties of photochromes, we undertook the synthesis and characterization of several ruthenium organometallic complexes of the type [Ru(Cp*)(dppe)(C≡C-SP)] or [Ru(CO)(dppe)(PPh3)Cl(CH═CH-SP)], where SP = spiropyran. The spectroscopic and electrochemical properties of the complexes were determined by careful cyclic voltammetric and spectroelectrochemical experiments. Whereas the mononuclear alkynyl ruthenium complexes undergo one-electron oxidations localized over the metal alkynyl moiety, the oxidation of the mononuclear vinyl ruthenium complexes is centered on the indoline moiety of the spiropyran. Through these studies, we demonstrate access to several stable redox states, in addition to switching states attained via acidochromism and/or photoisomerization.

3.
J Am Chem Soc ; 144(28): 12698-12714, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35767015

RESUMO

This paper describes the syntheses of several functionalized dihydropyrene (DHP) molecular switches with different substitution patterns. Regioselective nucleophilic alkylation of a 5-substituted dimethyl isophthalate allowed the development of a workable synthetic protocol for the preparation of 2,7-alkyne-functionalized DHPs. Synthesis of DHPs with surface-anchoring groups in the 2,7- and 4,9-positions is described. The molecular structures of several intermediates and DHPs were elucidated by X-ray single-crystal diffraction. Molecular properties and switching capabilities of both types of DHPs were assessed by light irradiation experiments, spectroelectrochemistry, and cyclic voltammetry. Spectroelectrochemistry, in combination with density functional theory (DFT) calculations, shows reversible electrochemical switching from the DHP forms to the cyclophanediene (CPD) forms. Charge-transport behavior was assessed in single-molecule scanning tunneling microscope (STM) break junctions, combined with density functional theory-based quantum transport calculations. All DHPs with surface-contacting groups form stable molecular junctions. Experiments show that the molecular conductance depends on the substitution pattern of the DHP motif. The conductance was found to decrease with increasing applied bias.

4.
J Am Chem Soc ; 141(9): 3965-3976, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30761898

RESUMO

High-resolution synchrotron and neutron single-crystal diffraction data of 18-crown-6/(pentakis)urea measured at 30 K are combined, with the aim of better appreciating the electrostatics associated with intermolecular interactions in condensed matter. With two 18-crown-6 molecules and five different urea molecules in the crystal, this represents the most ambitious combined X-ray/synchrotron and neutron experimental charge density analysis to date on a cocrystal or host-guest system incorporating such a large number of unique molecules. The dipole moments of the five urea guest molecules in the crystal are enhanced considerably compared to values determined for isolated molecules, and 2D maps of the electrostatic potential and electric field show clearly how the urea molecules are oriented with dipole moments aligned along the electric field exerted by their molecular neighbors. Experimental electric fields in the range of 10-19 GV m-1, obtained for the five different urea environments, corroborate independent measurements of electric fields in the active sites of enzymes and provide an important experimental reference point for recent discussions focused on electric-field-assisted catalysis.

5.
Inorg Chem ; 58(6): 3789-3799, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30835116

RESUMO

Several trinuclear ferrocenes are obtained by Friedel-Crafts reaction of octamethylferrocene with ferrocenoyl chloride and subsequent modifications. 1,1'-Diferrocenoyloctamethylferrocene (3) is transformed to the divinyl derivative (4a) by reaction with MeLi and AlCl3. The reactive 4a cyclizes spontaneously to a [4]ferrocenophane with buta-1,3-diene handle (5) or in the presence of AlCl3 to a [3]ferrocenophane with propene handle (6). Structure assignments are supported by X-ray crystallography and NMR spectroscopy, and mechanisms are proposed. Electrochemical behavior of the compounds was investigated with cyclic voltammetry, and assignments of the redox processes were carried out with the aid of density functional theory calculations. The synthesized compounds and demonstrated transformations represent useful tools for preparation of materials for charge-transport studies in metal-molecule-metal junctions.

6.
Angew Chem Int Ed Engl ; 58(30): 10255-10259, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31136063

RESUMO

The observation of an unusual crystal habit in the common diuretic drug hydrochlorothiazide (HCT), and identification of its subtle conformational chirality, has stimulated a detailed investigation of its crystalline forms. Enantiomeric conformers of HCT resolve into an unusual structure of conjoined enantiomorphic twin crystals comprising enantiopure domains of opposite chirality. The purity of the domains and the chiral molecular conformation are confirmed by spatially revolved synchrotron micro-XRD experiments and neutron diffraction, respectively. Macroscopic inversion twin symmetry observed between the crystal wings suggests a pseudoracemic structure that is not a solid solution or a layered crystal structure, but an unusual structural variant of conglomerates and racemic twins. Computed interaction energies for molecular pairs in the racemic and enantiopure polymorphs of HCT, and the observation of large opposing unit-cell dipole moments for the enantiopure domains in these twin crystals, suggest a plausible crystal nucleation mechanism for this unusual crystal habit.

7.
Angew Chem Int Ed Engl ; 56(29): 8468-8472, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28470995

RESUMO

Bending in molecular crystals is typically associated with the anisotropy of intermolecular interactions. The intriguing observation is reported of plastic bending in dimethyl sulfone, which exhibits nearly isotropic crystal packing and interaction topology, defying the known structural models of bending crystals. The origin of the bending phenomenon has been explored in terms of intermolecular interaction energies, experimental X-ray charge density analysis, and variable temperature neutron diffraction studies. H⋅⋅⋅H dihydrogen interactions and differences in electrostatic complementarity between molecular layers are found to facilitate the bending behavior.

8.
Dalton Trans ; 52(40): 14549-14563, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37781908

RESUMO

Functionalising organic molecular photoswitches with metal complexes has been shown to alter and enhance their switching states. These organometallic photoswitches provide a promising basis for novel smart molecular materials and molecular electronic devices. We have detailed the synthesis and characterisation of mono- and bimetallic half-sandwich ruthenium and iron complexes functionalised with alkynyl dihydropyrenes (DHP). Their electronic and photophysical properties were determined by the use of chemical, electrochemical and spectroelectrochemical techniques. The introduction of the metal alkynyl moiety allows access to additional redox and protonation states not accessible by the DHP alone. An additional metal alkynyl moiety inhibits observable photochromic switching. Analysis of the NIR and IR bands in the mixed valence complexes suggests there is a high degree of charge delocalisation across the DHP.

9.
Chem Asian J ; 18(18): e202300556, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37442812

RESUMO

Single-crystal X-ray diffraction studies for a variety of metal ion complexes of functionalised sarcophagines (sarcophagine=sar=3,6,10,13,16,19-hexa-azabicyclo[6.6.6]icosane) have further confirmed not only that the form of the metal ion/sar unit is unique for each metal, albeit with a sensitivity of the conformation to the associated counter anions, but also that for any given metal and ligand substituent, the dimensions (bond lengths and angles) of the complex and the substituent at the secondary nitrogen centres do not differ significantly from those of the isolated components. Despite this, where the substituent contains reactive sites, the reactivity differs markedly from that of their form in an uncoordinated substrate. Rationalisations are offered for these differences, in part through the use of Hirshfeld surface analysis of the intermolecular interactions. The kinetic inertness of the complexes means that the metal ions can be considered to act as regioselective protecting groups.

10.
Dalton Trans ; 51(4): 1603-1611, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34994360

RESUMO

We report an improved method for the controlled solvent-phase decomposition of ferrocene into highly crystalline monodisperse iron oxide nanoparticles at relatively low temperatures. Solution-phase decomposition of ferrocene into nanoparticles has received little attention in the literature, due to the percieved stability of ferrocene. However, we synthesised wüstite FeO-iron oxide core-shell nanoparticles by thermally decomposing ferrocene in 1-octadecene solvent and in the presence of oleic acid and oleylamine, as surfactants. We report procedures that provide cubic and spherical core-shell iron oxide nanoparticles whose size (29.3 ± 2.3 nm for spheres, 38.6 ± 6.9 nm for distorted cubes and 23.5 ± 2.4 nm for distorted cubes with concave faces) and shape can be controlled through simple adjustments to reaction parameters. Transmission electron microscopy, scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, electron energy-loss spectroscopy and powder X-ray diffraction analysis methods were used to characterise the nanoparticles.

11.
Dalton Trans ; 52(1): 185-200, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36477490

RESUMO

Multifunctional switches are crucial to the development of smart molecular materials and molecular-electronic applications. Here, we describe the synthesis, structure, and characterization of several spiropyrans functionalized with alkynyl-[Ru(dppe)2] moieties. Through electrochemical and spectroelectrochemical studies, we demonstrate access to several stable redox states, in addition to states accessed via acidochromism and photoisomerisation. Initial protonation was found to occur at the alkynyl functionality followed by acid-induced ring-opening of the spiropyran ligand to form the protonated merocyanine. The protonated merocyanine can be switched from the Z- to E-isomer by using ultraviolet light. The spiropyran was also shown to be an effective insulator for electronic communication across the molecular backbone.

12.
J Phys Chem A ; 115(45): 12962-72, 2011 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-21809888

RESUMO

The crystal structure of the ß-polymorph of hydroquinone (ß-HQ), the apohost of a large family of clathrates, is reported with a specific focus on intermolecular interactions and the electrostatic nature of its cavity. Hirshfeld surface analysis reveals subtle close contacts between two interconnecting HQ networks, and the local packing and related close contacts were examined by breakdown of the fingerprint plot. An experimental multipole model containing anisotropic thermal parameters for hydrogen atoms has been successfully refined against 15(2) K single microcrystal synchrotron X-ray diffraction data. The experimental electron density model has been compared with a theoretical electron density calculated with the molecule embedded in its own crystal field. Hirshfeld charges, interaction energies and the electrostatic potential calculated for both models are qualitatively in good agreement, but small differences in the electrostatic potential persist due to charge transfer from all hydrogen atoms to the oxygen atoms in the theoretical model. The electrostatic potential in the center of the cavity is positive, very shallow and highly symmetric, suggesting that the inclusion of polar molecules in the void will involve a balance between opposing effects. The electric field is by symmetry zero in the center of the cavity, increasing to a value of 0.0185 e/Å(2) (0.27 V/Å) 1 Å along the 3-fold axis and 0.0105 e/Å(2) (0.15 V/Å) 1 Å along the perpendicular direction. While these values are substantial in a macroscopic context, they are quite small for a molecular cavity and are not expected to strongly polarize a guest molecule.


Assuntos
Hidroquinonas/química , Hidroquinonas/síntese química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Modelos Moleculares , Difração de Pó , Teoria Quântica , Eletricidade Estática
13.
Inorg Chem ; 49(7): 3152-61, 2010 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-20199101

RESUMO

Various 2- and 3-thienylmethylamino-substituted cobalt(III) cage amine complexes, prepared with the objective of obtaining cage-functionalized polythienyls, have been found to be resistant to oxidative polymerization by both electrochemical and chemical procedures. X-ray structure determinations indicate that there is negligible perturbation of the physical dimensions of the thiophene moieties by the cage substituents and thus that the resistance to polymerization must be associated with the high positive charge carried by these substituents.

14.
J Comb Chem ; 12(1): 141-50, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20000720

RESUMO

A domino Horner-Wadsworth-Emmons olefination strategy has been used to prepare homologous series of (polyen)ones, and through combinatorial elaboration, corresponding families of highly branched hydrocarbons. Gas chromatography-mass spectrometry of the mixtures has enabled the rapid and unambiguous identification of several highly branched alkanes of geochemical importance. This is the first example of the use of combinatorial synthesis for the elucidation of structural connectivity.


Assuntos
Alcanos/química , Técnicas de Química Combinatória/métodos , Polipropilenos/síntese química , Cristalografia por Raios X , Cromatografia Gasosa-Espectrometria de Massas , Estrutura Molecular , Polipropilenos/química
15.
Inorg Chem ; 48(24): 11832-42, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-19938863

RESUMO

A series of ruthenium and osmium complexes containing highly fluorous diphosphine ligands (F)P(wedge)P(F) = (F(13)C(6)C(6)H(4)-p)(2)P(CH(2))(2)P(p-C(6)H(4)C(6)F(13))(2) (dfppe) and (F(13)C(6)C(6)H(4)-p)(2)P(CH(2))(3)P(p-C(6)H(4)C(6)F(13))(2) (dfppp) has been prepared. The fluorous diphosphine ligands incorporate four C(6)F(13) "fluoro-ponytails", and these have been effective in solubilizing the complexes in supercritical carbon dioxide (scCO(2)). Precise solubility measurements in scCO(2) were performed for some of the complexes. The new complexes [MX(2)((F)P(wedge)P(F))(2)] and [MX((F)P(wedge)P(F))(eta-C(5)H(5))], M = Ru, Os, X = Cl, Br, have been characterized by a number of spectroscopic techniques and their electrochemical properties measured, three of the ruthenium complexes also being characterized by single-crystal X-ray studies. The noncovalent interactions observed in the X-ray structures have been analyzed by the Hirshfeld surface approach, putting them on a more solid footing. The fluorinated complexes show significantly different solvation properties from those of the analogous unfluorinated compounds, particularly with respect to their behavior in common organic solvents and their good scCO(2) solubility.


Assuntos
Dióxido de Carbono/química , Hidrocarbonetos Fluorados/química , Compostos Organometálicos/química , Osmio/química , Fosfinas/química , Rutênio/química , Cristalografia por Raios X , Eletroquímica , Ligantes , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Solubilidade
16.
ACS Appl Mater Interfaces ; 11(40): 36886-36894, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31522492

RESUMO

Developing molecular circuits that can function as the active components in electrical devices is an ongoing challenge in molecular electronics. It demands mechanical stability of the single-molecule circuit while simultaneously being responsive to external stimuli mimicking the operation of conventional electronic components. Here, we report single-molecule circuits based on spiropyran derivatives that respond electrically to chemical and mechanical stimuli. The merocyanine that results from the protonation/ring-opening of the spiropyran form showed single-molecule diode characteristics, with an average current rectification ratio of 5 at ±1 V, favoring the orientation where the positively charged end of the molecule is attached to the negative terminal of the circuit. Mechanical pulling of a single spiropyran molecule drives a switch to a more conducting merocyanine state. The mechanical switching is enabled by the strong Au-C covalent bonding between the molecule and the electrodes, which allows the tensile force delivered by the STM piezo to break the molecule at its spiropyran C-O bond.

17.
Dalton Trans ; 46(33): 10899-10907, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28766632

RESUMO

This paper describes the facile synthesis of a number of electron rich octamethyl[1.4]ferrocenophanes with unsaturated handles from 1,1'-bis(1-chlorovinyl)octamethylferrocene. Treatment of this reactive compound with sodium hydroxide in DMF initiates a series of reactions resulting in the formation of four different ferrocenophanes. The most complex of these products arises from a cascade of cyclisations giving an unusual, unsymmetrical bis-ferrocenophane with a central fused cyclobutene. Control over the reaction outcome is achieved by manipulating the concentration of NaOH. Mechanisms are proposed, and supported by DFT calculations.

18.
Chem Sci ; 8(12): 8435-8442, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29619191

RESUMO

The Ley-Griffith reaction is utilized extensively in the selective oxidation of alcohols to aldehydes or ketones. The central catalyst is commercially available tetra-n-propylammonium perruthenate (TPAP, n-Pr4N[RuO4]) which is used in combination with the co-oxidant N-methylmorpholine N-oxide (NMO). Although this reaction has been employed for more than 30 years, the mechanism remains unknown. Herein we report a comprehensive study of the oxidation of diphenylmethanol using the Ley-Griffith reagents to show that the rate determining step involves a single alcohol molecule, which is oxidised by a single perruthenate anion; NMO does not appear in rate law. A key finding of this study is that when pure n-Pr4N[RuO4] is employed in anhydrous solvent, alcohol oxidation initially proceeds very slowly. After this induction period, water produced by alcohol oxidation leads to partial formation of insoluble RuO2, which dramatically accelerates catalysis via a heterogeneous process. This is particularly relevant in a synthetic context where catalyst degradation is usually problematic. In this case a small amount of n-Pr4N[RuO4] must decompose to RuO2 to facilitate catalysis.

19.
Dalton Trans ; 45(47): 18817-18821, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27774559

RESUMO

This paper describes the facile preparation of 1,1'-diacetyloctamethylferrocene (2) by acylation of octamethylferrocene (1) with acetyl chloride. Chloroformylation with POCl3/DMF of 2 affords a variety of products, including 1,1'-bis-(1-chlorovinyl)octamethylferrocene (3b) in high yield. Compound 3b cyclises in aqueous sodium hydroxide/DMF to an octamethyl[1,4]-ferrocenophane bearing a 1-dimethylaminobuta-1,3-diene-handle (4).

20.
Dalton Trans ; 45(30): 11983-9, 2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27385657

RESUMO

Epsilon cobalt (ε-Co) nanoparticles in a number of octahedral morphologies have been synthesised. The particles are polycrystalline, with sizes in the order of 30 nm. Magnetic studies reveal the particles are ferromagnetic, with a room temperature saturation magnetisation of 131 emu g(-1). Unlike other large cubic ε-Co syntheses, we have not added an additional co-surfactant. Instead, we have modified the heating regime and reaction agitation. This alternative method highlights the complex chemistry associated with the formation of cobalt nanoparticles by thermal decomposition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA