Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(5): 846-862, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36564184

RESUMO

Stress disorders impair sleep and quality of life; however, their pathomechanisms are unknown. Prolactin-releasing peptide (PrRP) is a stress mediator; we therefore hypothesized that PrRP may be involved in the development of stress disorders. PrRP is produced by the medullary A1/A2 noradrenaline (NA) cells, which transmit stress signals to forebrain centers, and by non-NA cells in the hypothalamic dorsomedial nucleus. We found in male rats that both PrRP and PrRP-NA cells innervate melanin-concentrating hormone (MCH) producing neurons in the dorsolateral hypothalamus (DLH). These cells serve as a key hub for regulating sleep and affective states. Ex vivo, PrRP hyperpolarized MCH neurons and further increased the hyperpolarization caused by NA. Following sleep deprivation, intracerebroventricular PrRP injection reduced the number of REM sleep-active MCH cells. PrRP expression in the dorsomedial nucleus was upregulated by sleep deprivation, while downregulated by REM sleep rebound. Both in learned helplessness paradigm and after peripheral inflammation, impaired coping with sustained stress was associated with (1) overactivation of PrRP cells, (2) PrRP protein and receptor depletion in the DLH, and (3) dysregulation of MCH expression. Exposure to stress in the PrRP-insensitive period led to increased passive coping with stress. Normal PrRP signaling, therefore, seems to protect animals against stress-related disorders. PrRP signaling in the DLH is an important component of the PrRP's action, which may be mediated by MCH neurons. Moreover, PrRP receptors were downregulated in the DLH of human suicidal victims. As stress-related mental disorders are the leading cause of suicide, our findings may have particular translational relevance.SIGNIFICANCE STATEMENT Treatment resistance to monoaminergic antidepressants is a major problem. Neuropeptides that modulate the central monoaminergic signaling are promising targets for developing alternative therapeutic strategies. We found that stress-responsive prolactin-releasing peptide (PrRP) cells innervated melanin-concentrating hormone (MCH) neurons that are crucial in the regulation of sleep and mood. PrRP inhibited MCH cell activity and enhanced the inhibitory effect evoked by noradrenaline, a classic monoamine, on MCH neurons. We observed that impaired PrRP signaling led to failure in coping with chronic/repeated stress and was associated with altered MCH expression. We found alterations of the PrRP system also in suicidal human subjects. PrRP dysfunction may underlie stress disorders, and fine-tuning MCH activity by PrRP may be an important part of the mechanism.


Assuntos
Hormônios Hipotalâmicos , Privação do Sono , Ratos , Masculino , Humanos , Animais , Hormônio Liberador de Prolactina/farmacologia , Hormônio Liberador de Prolactina/metabolismo , Privação do Sono/metabolismo , Transtornos do Humor/etiologia , Qualidade de Vida , Ratos Wistar , Hormônios Hipotalâmicos/metabolismo , Sono/fisiologia , Neurônios/fisiologia , Norepinefrina/metabolismo
2.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511494

RESUMO

Corticotropin-releasing hormone (CRH) neurons in the paraventricular hypothalamic nucleus (PVH) are in the position to integrate stress-related information and initiate adaptive neuroendocrine-, autonomic-, metabolic- and behavioral responses. In addition to hypophyseotropic cells, CRH is widely expressed in the CNS, however its involvement in the organization of the stress response is not fully understood. In these experiments, we took advantage of recently available Crh-IRES-Cre;Ai9 mouse line to study the recruitment of hypothalamic and extrahypothalamic CRH neurons in categorically distinct, acute stress reactions. A total of 95 brain regions in the adult male mouse brain have been identified as containing putative CRH neurons with significant expression of tdTomato marker gene. With comparison of CRH mRNA and tdTomato distribution, we found match and mismatch areas. Reporter mice were then exposed to restraint, ether, high salt, lipopolysaccharide and predator odor stress and neuronal activation was revealed by FOS immunocytochemistry. In addition to a core stress system, stressor-specific areas have been revealed to display activity marker FOS. Finally, activation of CRH neurons was detected by colocalization of FOS in tdTomato expressing cells. All stressors resulted in profound activation of CRH neurons in the hypothalamic paraventricular nucleus; however, a differential activation of pattern was observed in CRH neurons in extrahypothalamic regions. This comprehensive description of stress-related CRH neurons in the mouse brain provides a starting point for a systematic functional analysis of the brain stress system and its relation to stress-induced psychopathologies.


Assuntos
Hormônio Liberador da Corticotropina , Hipotálamo , Camundongos , Masculino , Animais , Hormônio Liberador da Corticotropina/metabolismo , Hipotálamo/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo
3.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163282

RESUMO

The relevance of vasopressin (AVP) of magnocellular origin to the regulation of the endocrine stress axis and related behaviour is still under discussion. We aimed to obtain deeper insight into this process. To rescue magnocellular AVP synthesis, a vasopressin-containing adeno-associated virus vector (AVP-AAV) was injected into the supraoptic nucleus (SON) of AVP-deficient Brattleboro rats (di/di). We compared +/+, di/di, and AVP-AAV treated di/di male rats. The AVP-AAV treatment rescued the AVP synthesis in the SON both morphologically and functionally. It also rescued the peak of adrenocorticotropin release triggered by immune and metabolic challenges without affecting corticosterone levels. The elevated corticotropin-releasing hormone receptor 1 mRNA levels in the anterior pituitary of di/di-rats were diminished by the AVP-AAV-treatment. The altered c-Fos synthesis in di/di-rats in response to a metabolic stressor was normalised by AVP-AAV in both the SON and medial amygdala (MeA), but not in the central and basolateral amygdala or lateral hypothalamus. In vitro electrophysiological recordings showed an AVP-induced inhibition of MeA neurons that was prevented by picrotoxin administration, supporting the possible regulatory role of AVP originating in the SON. A memory deficit in the novel object recognition test seen in di/di animals remained unaffected by AVP-AAV treatment. Interestingly, although di/di rats show intact social investigation and aggression, the SON AVP-AAV treatment resulted in an alteration of these social behaviours. AVP released from the magnocellular SON neurons may stimulate adrenocorticotropin secretion in response to defined stressors and might participate in the fine-tuning of social behaviour with a possible contribution from the MeA.


Assuntos
Hormônio Adrenocorticotrópico/metabolismo , Núcleo Supraóptico/metabolismo , Vasopressinas/metabolismo , Hormônio Adrenocorticotrópico/genética , Animais , Núcleo Basal de Meynert/metabolismo , Encéfalo/metabolismo , Corticosterona/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Brattleboro , Comportamento Social , Vasopressinas/fisiologia
4.
Brain Behav Immun ; 84: 218-228, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31821847

RESUMO

Chronic stress is often accompanied by gastrointestinal symptoms, which might be due to stress-induced shift of gut microbiome to pathogenic bacteria. It has been hypothesized that stress alters gut permeability and results in mild endotoxemia which exaggerates HPA activity and contributes to anxiety and depression. To reveal the relationship between microbiome composition, stress-induced gastrointestinal functions and behavior, we treated chronically stressed mice with non-absorbable antibiotic, rifaximin. The "two hits" stress paradigm was used, where newborn mice were separated from their mothers for 3 h daily as early life adversity (maternal separation, MS) and exposed to 4 weeks chronic variable stress (CVS) as adults. 16S rRNA based analysis of gut microbiome revealed increases of Bacteroidetes and Proteobacteria and more specifically, Clostridium species in chronically stressed animals. In mice exposed to MS + CVS, we found extenuation of colonic mucosa, increased bacterial translocation to mesenteric lymph node, elevation of plasma LPS levels and infiltration of F4/80 positive macrophages into the colon lamina propria. Chronically stressed mice displayed behavioral signs of anxiety-like behavior and neophobia. Rifaximin treatment decreased Clostridium concentration, gut permeability and LPS plasma concentration and increased colonic expression of tight junction proteins (TJP1, TJP2) and occludin. However, these beneficial effects of rifaximin in chronically stressed mice was not accompanied by positive changes in behavior. Our results suggest that non-absorbable antibiotic treatment alleviates stress-induced local pathologies, however, does not affect stress-induced behavior.


Assuntos
Microbioma Gastrointestinal , Microbiota , Rifaximina , Animais , Antibacterianos/farmacologia , Comportamento Animal/efeitos dos fármacos , Colo/efeitos dos fármacos , Colo/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Privação Materna , Camundongos , Permeabilidade/efeitos dos fármacos , RNA Ribossômico 16S/genética , Rifaximina/farmacologia , Estresse Fisiológico/efeitos dos fármacos
5.
Planta Med ; 86(11): 790-799, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32450572

RESUMO

Intestinal α-glucosidase and α-amylase break down nutritional poly- and oligosaccharides to monosaccharides and their activity significantly contributes to postprandial hyperglycemia. Competitive inhibitors of these enzymes, such as acarbose, are effective antidiabetic drugs, but have unpleasant side effects. In our ethnopharmacology inspired investigations, we found that wild strawberry (Fragaria vesca), blackberry (Rubus fruticosus), and European blueberry (Vaccinium myrtillus) leaf extracts inhibit α-glucosidase and α-amylase enzyme activity in vitro and are effective in preventing postprandial hyperglycemia in vivo. Toxicology tests on H9c2 rat embryonic cardiac muscle cells demonstrated that berry leaf extracts have no cytotoxic effects. Oral administration of these leaf extracts alone or as a mixture to normal (control), obese, prediabetic, and streptozotocin-induced diabetic mice attenuated the starch-induced rise of blood glucose levels. The efficiency was similar to that of acarbose on blood glucose. These results highlight berry leaf extracts as candidates for testing in clinical trials in order to assess the clinical significance of their effects on glycemic control.


Assuntos
Mirtilos Azuis (Planta) , Diabetes Mellitus Experimental , Fragaria , Hiperglicemia , Estado Pré-Diabético , Rubus , Animais , Glicemia , Inibidores de Glicosídeo Hidrolases , Hipoglicemiantes , Camundongos , Extratos Vegetais , Ratos , Amido
6.
Stress ; 21(2): 151-161, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29310485

RESUMO

Glutamatergic neurons, characterized by vesicular glutamate transporters (VGluT1-3) provide the main excitation in the brain. Their disturbances have been linked to various brain disorders, which could be also modeled by the contextual fear test in rodents. We aimed to characterize the participation of VGluT3 in the development of contextual fear through its contribution to hypothalamic-pituitary-adrenocortical axis (HPA) regulation using knockout (KO) mice. Contextual fear conditioning was induced by foot shock and mice were examined 1 and 7 d later in the same environment comparing wild type with KO. Foot shock increased the immobility time without context specificity. Additionally, foot shock reduced open arm time in the elevated plus maze (EPM) test, and distance traveled in the open field (OF) test, representing the generalization of fear. Moreover, KO mice spent more time with freezing during the contextual fear test, less time in the open arm of the EPM, and traveled a smaller distance in the OF, with less entries into the central area. However, there was no foot shock and genotype interaction suggesting that VGluT3 does not influence the fear conditioning, rather determines anxiety-like characteristic of the mice. The resting hypothalamic CRH mRNA was higher in KO mice with reduced stressor-induced corticosterone elevations. Immunohistochemistry revealed the presence of VGluT3 positive fibers in the paraventricular nucleus of hypothalamus, but not on the hypophysis. As a summary, we confirmed the involvement of VGluT3 in innate fear, but not in the development of fear memory and generalization, with a significant contribution to HPA alterations. Highlights VGluT3 KO mice show innate fear without significant influence on fear memory and generalization. A putative background is the higher resting CRH mRNA level in their PVN and reduced stress-reactivity.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Medo/fisiologia , Memória/fisiologia , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animais , Condicionamento Clássico/fisiologia , Corticosterona/sangue , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo
7.
Biochim Biophys Acta ; 1861(11): 1614-1622, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27417459

RESUMO

Brown adipose tissue (BAT) plays essential role in metabolic- and thermoregulation and displays morphological and functional plasticity in response to environmental and metabolic challenges. BAT is a heterogeneous tissue containing adipocytes and various immune-related cells, however, their interaction in regulation of BAT function is not fully elucidated. Fractalkine is a chemokine synthesized by adipocytes, which recruits fractalkine receptor (CX3CR1)-expressing leukocytes into the adipose tissue. Using transgenic mice, in which the fractalkine receptor, Cx3cr1 gene was replaced by Gfp, we evaluated whether deficiency in fractalkine signaling affects BAT remodeling and function in high-fat-diet - induced obesity. Homo- and heterozygote male CX3CR1-GFP mice were fed with normal or fat enriched (FatED) diet for 10weeks. Interscapular BAT was collected for molecular biological analysis. Heterozygous animals in which fractalkine signaling remains intact, gain more weight during FatED than CX3CR1 deficient gfp/gfp homozygotes. FatED in controls resulted in macrophage recruitment to the BAT with increased expression of proinflammatory mediators (Il1a, b, Tnfa and Ccl2). Local BAT inflammation was accompanied by increased expression of lipogenic enzymes and resulted in BAT "whitening". By contrast, fractalkine receptor deficiency prevented accumulation of tissue macrophages, selectively attenuated the expression of Tnfa, Il1a and Ccl2, increased BAT expression of lipolytic enzymes (Atgl, Hsl and Mgtl) and upregulated genes involved thermo-metabolism (Ucp1, Pparg Pgc1a) in response to FatED. These results highlight the importance of fractalkine-CX3CR1 interaction in recruitment of macrophages into the BAT of obese mice which might contribute to local tissue inflammation, adipose tissue remodeling and regulation of metabolic-related genes.


Assuntos
Tecido Adiposo Marrom/metabolismo , Regulação da Expressão Gênica , Macrófagos/metabolismo , Obesidade/genética , Obesidade/metabolismo , Receptores de Quimiocinas/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Biomarcadores/metabolismo , Peso Corporal , Receptor 1 de Quimiocina CX3C , Quimiocina CX3CL1/deficiência , Quimiocina CX3CL1/metabolismo , Temperatura Baixa , Dieta Hiperlipídica , Proteínas de Fluorescência Verde/metabolismo , Mediadores da Inflamação/metabolismo , Lipogênese/genética , Lipólise/genética , Masculino , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Receptores de Quimiocinas/deficiência , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
8.
Proc Natl Acad Sci U S A ; 109(38): 15455-60, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22949675

RESUMO

Bone mass accrual is a major determinant of skeletal mass, governed by bone remodeling, which consists of bone resorption by osteoclasts and bone formation by osteoblasts. Bone mass accrual is inhibited by sympathetic signaling centrally regulated through activation of receptors for serotonin, leptin, and ACh. However, skeletal activity of the parasympathetic nervous system (PSNS) has not been reported at the bone level. Here we report skeletal immune-positive fibers for the PSNS marker vesicular ACh transporter (VAChT). Pseudorabies virus inoculated into the distal femoral metaphysis is identifiable in the sacral intermediolateral cell column and central autonomic nucleus, demonstrating PSNS femoral innervation originating in the spinal cord. The PSNS neurotransmitter ACh targets nicotinic (nAChRs), but not muscarinic receptors in bone cells, affecting mainly osteoclasts. nAChR agonists up-regulate osteoclast apoptosis and restrain bone resorption. Mice deficient of the α(2)nAChR subunit have increased bone resorption and low bone mass. Silencing of the IL-1 receptor signaling in the central nervous system by brain-specific overexpression of the human IL-1 receptor antagonist (hIL1ra(Ast)(+/+) mice) leads to very low skeletal VAChT expression and ACh levels. These mice also exhibit increased bone resorption and low bone mass. In WT but not in hIL1ra(Ast)(+/+) mice, the cholinergic ACh esterase inhibitor pyridostigmine increases ACh levels and bone mass apparently by inhibiting bone resorption. Taken together, these results identify a previously unexplored key central IL-1-parasympathetic-bone axis that antagonizes the skeletal sympathetic tone, thus potently favoring bone mass accrual.


Assuntos
Osso e Ossos/metabolismo , Interleucina-1/metabolismo , Sistema Nervoso Parassimpático/fisiologia , Acetilcolina/metabolismo , Animais , Apoptose , Densidade Óssea , Reabsorção Óssea , Encéfalo/metabolismo , Proliferação de Células , Coração/fisiologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Brometo de Piridostigmina/farmacologia , Transdução de Sinais
9.
Brain Behav Immun ; 38: 25-35, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24456845

RESUMO

Diet-induced obesity and related peripheral and central inflammation are major risk factors for metabolic, neurological and psychiatric diseases. The chemokine fractalkine (Cx3CL1) and its receptor Cx3CR1 play a pivotal role in recruitment, infiltration and proinflammatory polarization of leukocytes and micoglial cells, however, the role of fractalkine signaling in the development of metabolic inflammation is not fully resolved. To address this issue, fractalkine receptor deficient (Cx3CR1 gfp/gfp) mice were exposed to normal or fat-enriched diet (FatED) for 10weeks and physiological-, metabolic- and immune parameters were compared to those animals in which the fractalkine signaling is maintained by the presence of one functioning allele (Cx3CR1 +/gfp). Mice with intact fractalkine signaling develop obesity characterized by increased epididymal white fat depots and mild glucose intolerance, recruit leukocytes into the visceral adipose tissue and display increased expression of subset of pro- and anti-inflammatory cytokines when exposed to fat-enriched diet. By contrast, Cx3CR1-deficient (gfp/gfp) mice gain significantly less weight on fat-enriched diet and have smaller amount of white adipose tissue (WAT) in the visceral compartment than heterozygote controls. Furthermore, Cx3CR1 gfp/gfp mice fed a fat-enriched diet do not develop glucose intolerance, recruit proportionally less number of gfp-positive cells and express significantly less MCP-1, IL-1α and TNFα in the WAT than control animals with fat-enriched diet induced obesity. Furthermore, heterozygote obese, but not fractalkine receptor deficient mice express high levels of anti-inflammatory IL-10 and arginase1 markers in the visceral fat. The effect of fat-enriched diet on cytokine expression pattern was specific for the WAT, as we did not detect significant elevation of interleukin-1, tumor necrosis factor-alpha and monocyte chemotacting protein (MCP-1) expression in the liver or in the hypothalamus in either genotype. These results highlight the importance of fractalkine signaling in recruitment and polarization of adipose tissue immune cells and identify fractalkine as a target to fight obesity-induced inflammatory complications.


Assuntos
Tecido Adiposo/metabolismo , Quimiocina CX3CL1/metabolismo , Dieta Hiperlipídica , Obesidade/metabolismo , Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Knockout , Sistema Hipófise-Suprarrenal/metabolismo
10.
Thromb Haemost ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950604

RESUMO

OBJECTIVE: Hereditary aortic diseases (hADs) increase the risk of aortic dissections and ruptures. Recently, we have established an objective approach to measure the rupture force of the murine aorta, thereby explaining the outcomes of clinical studies and assessing the added value of approved drugs in vascular Ehlers-Danlos syndrome (vEDS). Here, we applied our approach to six additional mouse hAD models. MATERIAL AND METHODS: We used two mouse models (Fbn1C1041G and Fbn1mgR ) of Marfan syndrome (MFS) as well as one smooth-muscle-cell-specific knockout (SMKO) of Efemp2 and three CRISPR/Cas9-engineered knock-in models (Ltbp1, Mfap4, and Timp1). One of the two MFS models was subjected to 4-week-long losartan treatment. Per mouse, three rings of the thoracic aorta were prepared, mounted on a tissue puller, and uniaxially stretched until rupture. RESULTS: The aortic rupture force of the SMKO and both MFS models was significantly lower compared with wild-type mice but in both MFS models higher than in mice modeling vEDS. In contrast, the Ltbp1, Mfap4, and Timp1 knock-in models presented no impaired aortic integrity. As expected, losartan treatment reduced aneurysm formation but surprisingly had no impact on the aortic rupture force of our MFS mice. CONCLUSION: Our read-out system can characterize the aortic biomechanical integrity of mice modeling not only vEDS but also related hADs, allowing the aortic-rupture-force-focused comparison of mouse models. Furthermore, aneurysm progression alone may not be a sufficient read-out for aortic rupture, as antihypertensive drugs reducing aortic dilatation might not strengthen the weakened aortic wall. Our results may enable identification of improved medical therapies of hADs.

11.
Neuropharmacology ; 205: 108898, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861283

RESUMO

The centrally-projecting Edinger-Westphal nucleus (EWcp) hosts a large population of neurons expressing urocortin 1 (Ucn1) and about half of these neurons also express the leptin receptor (LepRb). Previously, we have shown that the peripheral adiposity hormone leptin signaling energy surfeit modulates EWcp neurons' activity. Here, we hypothesized that Ucn1/LepRb neurons in the EWcp would act as a crucial neuronal node in the brain-white adipose tissue (WAT) axis modulating efferent sympathetic outflow to the WAT. We showed that leptin bound to neurons of the EWcp stimulated STAT3 phosphorylation, and increased Ucn1-production in a time-dependent manner. Besides, retrograde transneuronal tract-tracing using pseudorabies virus (PRV) identified EWcp Ucn1 neurons connected to WAT. Interestingly, reducing EWcp Ucn1 contents by ablating EWcp LepRb-positive neurons with leptin-saporin, did not affect food intake and body weight gain, but substantially (+26%) increased WAT weight accompanied by a higher plasma leptin level and changed plasma lipid profile. We also found that ablation of EWcp Ucn1/LepRb neurons resulted in lower respiratory quotient and oxygen consumption one week after surgery, but was comparable to sham values after 3 and 5 weeks of surgery. Taken together, we report that EWcp/LepRb/Ucn1 neurons not only respond to leptin signaling but also control WAT size and fat metabolism without altering food intake. These data suggest the existence of a EWcp-WAT circuitry allowing an organism to recruit fuels without being able to eat in situations such as the fight-or-flight response.


Assuntos
Tecido Adiposo Branco/metabolismo , Núcleo de Edinger-Westphal/metabolismo , Leptina/metabolismo , Receptores para Leptina/metabolismo , Fator de Transcrição STAT3/metabolismo , Sistema Nervoso Simpático/metabolismo , Urocortinas/metabolismo , Animais , Herpesvirus Suídeo 1 , Masculino , Ratos
12.
iScience ; 25(8): 104693, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35880047

RESUMO

There is a strong relationship between stress and metabolism. Because acute traumatic- and chronic stress events are often accompanied with metabolic pathophysiology, it is important to understand the details of the metabolic stress response. In this study we directly compared metabolic effects of acute stress with chronic repeated- and chronic unpredictable stress in mouse models. All types of adversities increased energy expenditure, chronic stress exposure decreased body weight gain, locomotor activity and differentially affected fuel utilization. During chronic exposure to variable stressors, carbohydrates were the predominant fuels, whereas fatty acids were catabolized in acutely and repeatedly restrained animals. Chronic exposure to variable stressors in unpredictable manner provoked anxiety. Our data highlight differences in metabolic responses to acute- repeated- and chronic stressors, which might affect coping behavior and underlie stress-induced metabolic and psychopathologies.

13.
J Neuroinflammation ; 8: 164, 2011 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-22114895

RESUMO

BACKGROUND: Systemic inflammation impairs outcome in stroke patients and experimental animals via mechanisms which are poorly understood. Circulating inflammatory mediators can activate cerebrovascular endothelium or glial cells in the brain and impact on ischaemic brain injury. One of the most serious early clinical complications of cerebral ischaemia is brain oedema, which compromises survival in the first 24-48 h. It is not understood whether systemic inflammatory challenges impair outcome after stroke by increasing brain injury only or whether they have direct effects on brain oedema, cerebrovascular inflammation and blood-brain barrier damage. METHODS: We used two different systemic inflammatory stimuli, acute endotoxin treatment and anaphylaxis to study mechanisms of brain injury after middle cerebral artery occlusion (MCAo). Ischaemic brain injury, blood-brain barrier damage and oedema were analysed by histological techniques. Systemic cytokine responses and inflammatory changes in the brain were analysed by cytometric bead array, immunofluorescence, in situ hibridization and quantitative real-time PCR. RESULTS: Systemic inflammatory challenges profoundly impaired survival in the first 24 h after experimental stroke in mice, independently of an increase in infarct size. Systemic lipopolysaccharide (LPS) dose-dependently increased mortality (50-100%) minutes to hours after cerebral ischaemia. Acute anaphylactic challenge in ovalbumin-sensitised mice affected stroke more seriously when induced via intraperitoneal administration compared to intravenous. Both LPS and anaphylaxis induced inflammatory changes in the blood and in the brain prior to experimental stroke. Plasma cytokine levels were significantly higher after LPS, while increased IL-10 levels were seen after anaphylaxis. After MCAo, both LPS and anaphylaxis increased microglial interleukin-1α (IL-1α) expression and blood-brain barrier breakdown. LPS caused marked granulocyte recruitment throughout the ipsilateral hemisphere. To investigate whether reduction of ischaemic damage can improve outcome in systemic inflammation, controlled hypothermia was performed. Hypothermia reduced infarct size in all treatment groups and moderately improved survival, but failed to reduce excess oedema formation after anaphylaxis and LPS-induced neuroinflammation. CONCLUSIONS: Our results suggest that systemic inflammatory conditions induce cerebrovascular inflammation via diverse mechanisms. Increased brain inflammation, blood-brain barrier injury and brain oedema formation can be major contributors to impaired outcome in mice after experimental stroke with systemic inflammatory stimuli, independently of infarct size.


Assuntos
Barreira Hematoencefálica/patologia , Edema Encefálico/etiologia , Edema Encefálico/patologia , Encéfalo/patologia , Inflamação/etiologia , Inflamação/patologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Anafilaxia/imunologia , Animais , Encéfalo/imunologia , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Infarto Cerebral/complicações , Infarto Cerebral/patologia , Citocinas/imunologia , Humanos , Hipotermia Induzida , Infarto da Artéria Cerebral Média , Inflamação/imunologia , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Ovalbumina/farmacologia
14.
J Neuroinflammation ; 8: 186, 2011 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-22206506

RESUMO

BACKGROUND: Cerebral ischemia is a devastating condition in which the outcome is heavily influenced by inflammatory processes, which can augment primary injury caused by reduced blood supply. The cytokines interleukin-1α (IL-1α) and IL-1ß are key contributors to ischemic brain injury. However, there is very little evidence that IL-1 expression occurs at the protein level early enough (within hours) to influence brain damage after stroke. In order to determine this we investigated the temporal and spatial profiles of IL-1α and IL-1ß expression after cerebral ischemia. FINDINGS: We report here that in mice, as early as 4 h after reperfusion following ischemia induced by occlusion of the middle cerebral artery, IL-1α, but not IL-1ß, is expressed by microglia-like cells in the ischemic hemisphere, which parallels an upregulation of IL-1α mRNA. 24 h after ischemia IL-1α expression is closely associated with areas of focal blood brain barrier breakdown and neuronal death, mostly near the penumbra surrounding the infarct. The sub-cellular distribution of IL-1α in injured areas is not uniform suggesting that it is regulated. CONCLUSIONS: The early expression of IL-1α in areas of focal neuronal injury suggests that it is the major form of IL-1 contributing to inflammation early after cerebral ischemia. This adds to the growing body of evidence that IL-1α is a key mediator of the sterile inflammatory response.


Assuntos
Lesões Encefálicas/imunologia , Lesões Encefálicas/patologia , Isquemia Encefálica/imunologia , Isquemia Encefálica/patologia , Interleucina-1alfa/imunologia , Interleucina-1beta/imunologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/patologia , Receptor 1 de Quimiocina CX3C , Infarto da Artéria Cerebral Média , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/citologia , Microglia/imunologia , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/imunologia
15.
Cell Mol Gastroenterol Hepatol ; 12(5): 1617-1641, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34246810

RESUMO

BACKGROUND & AIMS: Neuroinflammation in the gut is associated with many gastrointestinal (GI) diseases, including inflammatory bowel disease. In the brain, neuroinflammatory conditions are associated with blood-brain barrier (BBB) disruption and subsequent neuronal injury. We sought to determine whether the enteric nervous system is similarly protected by a physical barrier and whether that barrier is disrupted in colitis. METHODS: Confocal and electron microscopy were used to characterize myenteric plexus structure, and FITC-dextran assays were used to assess for presence of a barrier. Colitis was induced with dextran sulfate sodium, with co-administration of liposome-encapsulated clodronate to deplete macrophages. RESULTS: We identified a blood-myenteric barrier (BMB) consisting of extracellular matrix proteins (agrin and collagen-4) and glial end-feet, reminiscent of the BBB, surrounded by a collagen-rich periganglionic space. The BMB is impermeable to the passive movement of 4 kDa FITC-dextran particles. A population of macrophages is present within enteric ganglia (intraganglionic macrophages [IGMs]) and exhibits a distinct morphology from muscularis macrophages, with extensive cytoplasmic vacuolization and mitochondrial swelling but without signs of apoptosis. IGMs can penetrate the BMB in physiological conditions and establish direct contact with neurons and glia. Dextran sulfate sodium-induced colitis leads to BMB disruption, loss of its barrier integrity, and increased numbers of IGMs in a macrophage-dependent process. CONCLUSIONS: In intestinal inflammation, macrophage-mediated degradation of the BMB disrupts its physiological barrier function, eliminates the separation of the intra- and extra-ganglionic compartments, and allows inflammatory stimuli to access the myenteric plexus. This suggests a potential mechanism for the onset of neuroinflammation in colitis and other GI pathologies with acquired enteric neuronal dysfunction.


Assuntos
Colite/etiologia , Colite/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Plexo Mientérico/citologia , Plexo Mientérico/metabolismo , Animais , Biomarcadores , Colite/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Sistema Nervoso Entérico/imunologia , Sistema Nervoso Entérico/metabolismo , Matriz Extracelular , Imunofluorescência , Imuno-Histoquímica , Imunofenotipagem , Camundongos , Plexo Mientérico/ultraestrutura , Neuroglia/metabolismo , Neuroglia/ultraestrutura , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Infiltração de Neutrófilos
16.
Mol Ther Methods Clin Dev ; 20: 218-226, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33426148

RESUMO

We developed an orally administered, engineered, bacterium-based, RNA interference-mediated therapeutic method to significantly reduce the symptoms in the most frequently used animal model of inflammatory bowel disease. This bacterium-mediated RNA interference strategy was based on the genomically stable, non-pathogenic E. coli MDS42 strain, which was engineered to constitutively produce invasin and the listeriolysin O cytolysin. These proteins enabled the bacteria first to invade the colon epithelium and then degrade in the phagosome. This allowed the delivery of a plasmid encoding small hairpin RNA (shRNA) targeting tumor necrosis factor (TNF) into the cytoplasm of the target cells. The expression levels of TNF and other cytokines significantly decreased upon this treatment in dextran sulfate sodium (DSS)-induced colitis, and the degree of inflammation was significantly reduced. With further safety modifications this method could serve as a safe and side effect-free alternative to biologicals targeting TNF or other inflammatory mediators.

17.
J Neurochem ; 114(2): 475-87, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20438612

RESUMO

The transcription factor DeltaFosB is induced in the nucleus accumbens (NAc) by drugs of abuse. This study was designed to evaluate the possible modifications in FosB/DeltaFosB expression in both hypothalamic and extrahypothalamic brain stress system during morphine dependence and withdrawal. Rats were made dependent on morphine and, on day 8, were injected with saline or naloxone. Using immunohistochemistry and western blot, the expression of FosB/DeltaFosB, tyrosine hydroxylase (TH), corticotropin-releasing factor (CRF) and pro-dynorphin (DYN) was measured in different nuclei from the brain stress system in morphine-dependent rats and after morphine withdrawal. Additionally, we studied the expression of FosB/DeltaFosB in CRF-, TH- and DYN-positive neurons. FosB/DeltaFosB was induced after chronic morphine administration in the parvocellular part of the hypothalamic paraventricular nucleus (PVN), NAc-shell, bed nucleus of the stria terminalis, central amygdala and A(2) noradrenergic part of the nucleus tractus solitarius (NTS-A(2)). Morphine dependence and withdrawal evoked an increase in FosB/DeltaFosB-TH and FosB/DeltaFosB-CRF double labelling in NTS-A(2) and PVN, respectively, besides an increase in TH levels in NTS-A(2) and CRF expression in PVN. These data indicate that neuroadaptation to addictive substances, observed as accumulation of FosB/DeltaFosB, is not limited to the reward circuits but may also manifest in other brain regions, such as the brain stress system, which have been proposed to be directly related to addiction.


Assuntos
Encéfalo/metabolismo , Dependência de Morfina/metabolismo , Proteínas Proto-Oncogênicas c-fos/biossíntese , Estresse Fisiológico , Síndrome de Abstinência a Substâncias/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Hormônio Liberador da Corticotropina/metabolismo , Dinorfinas/metabolismo , Encefalinas/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Masculino , Morfina/efeitos adversos , Dependência de Morfina/fisiopatologia , Sistema Hipófise-Suprarrenal/fisiopatologia , Precursores de Proteínas/metabolismo , Ratos , Ratos Wistar , Síndrome de Abstinência a Substâncias/fisiopatologia , Tirosina 3-Mono-Oxigenase/metabolismo
18.
Am J Pathol ; 175(2): 725-35, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19590037

RESUMO

Mammalian peroxidases are heme-containing enzymes that serve diverse biological roles, such as host defense and hormone biosynthesis. A mammalian homolog of Drosophila peroxidasin belongs to the peroxidase family; however, its function is currently unknown. In this study, we show that peroxidasin is present in the endoplasmic reticulum of human primary pulmonary and dermal fibroblasts, and the expression of this protein is increased during transforming growth factor-beta1-induced myofibroblast differentiation. Myofibroblasts secrete peroxidasin into the extracellular space where it becomes organized into a fibril-like network and colocalizes with fibronectin, thus helping to form the extracellular matrix. We also demonstrate that peroxidasin expression is increased in a murine model of kidney fibrosis and that peroxidasin localizes to the peritubular space in fibrotic kidneys. In addition, we show that this novel pathway of extracellular matrix formation is unlikely mediated by the peroxidase activity of the protein. Our data indicate that peroxidasin secretion represents a previously unknown pathway in extracellular matrix formation with a potentially important role in the physiological and pathological fibrogenic response.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Rim/patologia , Mioblastos/metabolismo , Peroxidase/metabolismo , Animais , Células COS , Chlorocebus aethiops , Modelos Animais de Doenças , Fibrose , Humanos , Rim/metabolismo , Camundongos , Peroxidasina
19.
Med Hypotheses ; 137: 109564, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31954994

RESUMO

Parkinson's disease (PD) is a neurodegenerative amyloid disorder with debilitating motor symptoms due to the loss of dopamine-synthesizing, basal ganglia-projecting neurons in the substantia nigra. An interesting feature of the disease is that most of PD patients have gastrointestinal problems and bacterial dysbiosis, years before the full expression of motor symptoms. We hypothesized that antibiotic consumption might be a contributing factor of gut microbiome dysbiosis in PD, favoring curli-producing Enterobacteria. Curli is a bacterial α-synuclein (αSyn) which is deposited first in the enteric nervous system and amyloid deposits are propagated in a prion like manner to the central nervous system. In addition, antibiotics result in a low-grade systemic inflammation, which also contributes to damage of neurons in enteric- and central nervous system. To support our hypothesis, by comparing PD prevalence change with antibiotic consumption data in EU countries, we found significant positive correlation between use narrow spectrum penicillin + penicillinase resistant penicillin and increased prevalence of the disease.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Antibacterianos/efeitos adversos , Disbiose/induzido quimicamente , Humanos , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína
20.
Toxins (Basel) ; 12(11)2020 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-33266415

RESUMO

Ochratoxin-A (OTA) is a carcinogenic and nephrotoxic mycotoxin, which may cause health problems in humans and animals, and it is a contaminant in foods and feeds. The purpose of the present study is to evaluate the effect of oral OTA exposure on the antioxidant defense and lipid peroxidation in the kidney. In vivo administration of OTA in CD1, male mice (1 or 10 mg/kg body weight in a single oral dose for 24 h and repeated daily oral dose for 72 h or repeated daily oral dose of 0.5 mg/kg bodyweight for 21 days) resulted in a significant elevation of OTA levels in blood plasma. Some histopathological alterations, transcriptional changes in the glutathione system, and oxidative stress response-related genes were also found. In the renal cortex, the activity of the glutathione-system-related enzymes and certain metabolites of the lipid peroxidation (conjugated dienes, trienes, and thiobarbituric reactive substances) also changed.


Assuntos
Rim/efeitos dos fármacos , Ocratoxinas/toxicidade , Animais , Glutationa/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/metabolismo , Rim/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Ocratoxinas/sangue , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA